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In 1980, the mathematician Benoît Mandelbrot visualized for the first time
on a computer many mathematical objects that he called fractals.

One of the most popular fractals is the Mandelbrot set, obtained from the
iteration of the polynomial function z2+ c. A few years later, factals images
were generated from polynomials of the form zp+ c. They are usually called
multibrot sets.

These fractals are two-dimensional (2D). Many mathematicians were inter-
ested in exploring these in three-dimensional space (3D).

In 2000, D. Rochon published a paper that proposed an efficient method to
observe fractal objects in 3D. His method uses a particular number struc-
ture: the bicomplex numbers.

Then, V. Garant-Pelletier and D. Rochon studied the Mandelbrot set on the
space of tricomplex numbers. More generally, they studied the same set in
the multicomplex spaces. They generalized many results associated to the
classical Mandelbrot set into these new structures.

In this poster, the results from V. Garant-Pelletier and D. Rochon’s article
are generalized to multibrot sets.

Introduction

•What are the shapes of the fractal sets generated by polynomial functions
of the form zp+ c where z and c are complex numbers and p is an integer
greater than or equal to 2?

•What are the properties of these sets?

• Can we generate these sets with another number structure such as the
bicomplex or the tricomplex numbers?

• Is it possible to construct an algorithm to generate these fractal images?

Questions

1. Complex numbers: A complex number in C ≃M(1) is defined as follow:

z = 1 + 2i1 (1)

where i21 = −1 and 1, 2 are real numbers.

2. Bicomplex numbers: A bicomplex number in M(2) is defined as a
quadruplet of real numbers:

ζ = 1 + 2i1 + 3i2 + 4j1 (2)

where i21 = i2
2
= −1, j21 = 1 and  ∈ R.

3. Tricomplex numbers: A tricomplex number in M(3) is defined as an
octuplet of real numbers:

η = 1 + 2i1 + 3i2 + 4i3 + 5i4 + 6j1 + 7j2 + 8j3 (3)

where i4 = i1i2i3, i
2
3 = i24 = −1 and j22 = j23 = 1.

Definitions

Multibrot sets: The Multibrots are based on a simple polynomial function:

Qp,c(z) = zp + c (4)

iterated many times from the starting point z = 0. The variable z and the
fixed number c are complex numbers, bicomplex numbers or tricomplex
numbers and p is an integer greater than or egal to 2. Precisely, the defini-
tion of the multibrot sets is:

M
p


:=

§

c ∈M() :
n

Qn
p,c
(0)
o∞

n=1
is bounded

ª

(5)

where  = 1,2 or 3.

Definitions (continued...)

To visualize the Multibrots in two or three dimensions, two important results
have to be considered.

Theorem 1 If a number c belongs to a Multibrot M
p


, then its modulus is

less than or equal to 21/(p−1).

Theorem 2A number c belongs to a Multibrot if, and only if, the modulus
of its iterates |Qn

p,c
(0)| do not exceed 21/(p−1) for any integer n ≥ 1.

Theorem 1 says that the multibrot sets are inside a discus (in 2D) or a
ball (in 3D) with a radius 21/(p−1). This fact restricts the region to explore
and to test if a number c belongs to a Multibrot. This test is described
in the statement of Theorem 2: For each number c (e.g., in the complex
plane), compute the succesive iterates Qp,c(0) = c, Q2

p,c
(0) = Qp,c(Qp,c(0))

= Qp,c(c) = cp + c, etc. and verify that its modulus, at each step, is less

than or equal to 21/(p−1).

To perform the test in the plane, we fix a
domain of exploration (of complex points).
These points are associated with the pixels
of a given image (the pink square in the
figure on the left). To make the algorithm
easier, we take a squared domain where
each side length is 2 · 21/(p−1).
Then, we fix a maximum number of itera-
tions from which we accept that a number
is in a Multibrot.

If the computations mentionned above are verified up to the maximum
number of iterations, then the pixel that is associated to the number c is
assigned a given color.

For Multibrots in the 3D space, the technique is similar. We choose three
components of the bicomplex or the tricomplex numbers and fix the re-
maining components to 0. Then, instead of taking a square, we use a cubic
domain with side length equal to 2 · 21/(p−1). Once more, we execute the
same steps as in the 2D case, adapted to the 3D domain.

Theory and Method

In 2D:
By varying the integer p, we get many fractal images. Black regions repre-
sent multibrot sets. Colors represent the divergence’s speed of iterates.
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In 3D:
There are many possibilities for the 3D slices of a Multibrot. The following
images give an idea of all the possibilities that are available.
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Rendering results

The Generalized Multibrots have a rich fractal structure. They may be used
in virtual reality or movies. Currently, two questions remain unanswered in
general:

1.What is the link between the real intersection of Multibrots and their tri-
complex versions in general?

2. If we can classify the 3D slices, how many classes are there in general?

Conclusion
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