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Abstract

We use a commutative generalization of complex numbers called bicomplex numbers to intro-
duce bicomplex dynamics. In particular, we give a generalization of the Mandelbrot set and
of the “filled-Julia” sets in dimensions three and four. Also, we establish that our version of
the Mandelbrot set with quadratic polynomial in bicomplex numbers of the form w2 + c is
identically the set of points where the associated generalized “filled-Julia” set is connected.
Moreover, we prove that our generalized Mandelbrot set of dimension four is connected.

1. INTRODUCTION

In 1982, A. Norton (1982)1 gave some straightfor-
ward algorithms for the generation and display in
3-D of fractal shapes. For the first time, iteration
with quaternions2 appeared. Subsequently, theo-
retical results have been treated in Ref. 3 (1995)
for the quaternionic Mandelbrot set defined with
quadratic polynomial in the quaternions of the form
q2+c. However, in Ref. 4, S. Bedding and K. Briggs
(1995) established that there is no interesting dy-
namics for this approach and it does not play any

fundamental role analogous to that for the map
z2 + c in the complex plane. We note that another
definition of a Mandelbrot set for the quaternions
was introduced by J. Holbrook (1987)5. This defi-
nition gives a Mandelbrot set in R3 which is not a
slice of the quaternionic quadratic Mandelbrot set.

In this article, we use a commutative general-
ization of the complex numbers called bicomplex
numbers6–9 to give a new version of the Mandel-
brot set in dimensions three and four. Moreover,
we prove that our generalization in dimension four,
noted M2, is a connected set. We also define the
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356 D. Rochon

concept of “filled-Julia” set for bicomplex numbers
and we prove that a point is inside M2 if and only
if the “filled-Julia” set at that point is connected.
These two results are perfectly analogous to the
corresponding results in the complex plane.

Our generalization of the Mandelbrot set in di-
mension three is established from a slice ofM2. We
also give a graphics representation of our set, called
the Tetrabrot, in R3 and we especially focus our at-
tention on the infinite divergence layers to approach
this set. Moreover, we give a graphics representa-
tion of the associated “filled-Julia” set for points on
the Tetrabrot, and we note that shapes of certain
“filled-Julia” sets are reflected in the shape of the
Tetrabrot near the corresponding points. This fea-
ture had also been remarked for the Mandelbrot set
in the complex plane.

Finally, we remark that the Tetrabrot could pos-
sibly be unconnected, and we establish hypotheses
about the geometry of the Mandelbrot set for which
the Tetrabrot would be unconnected.

2. PRELIMINARIES

Here, we introduce some of the basic results of
the theory of bicomplex numbers. First, we de-
fine bicomplex numbers as follows: C2 := {a +
bi1 + ci2 + dj : i1

2 = i2
2 = −1, j2 = 1 and

i2j = ji2 = −i1, i1j = ji1 = −i2, i2i1 = i1i2 = j}
where a, b, c, d ∈ R. In this article, the norm used
on C2 will be the Euclidean norm (also noted | |)
of R4.

We remark that we can write a bicomplex num-
ber a+bi1+ci2+dj as (a+bi1)+(c+di1)i2 = z1+z2i2
where z1, z2 ∈ C1 := {x+yi1 : i1

2 = −1}. Thus, C2

can be viewed as the complexification of the usual
complex numbers C1 and a bicomplex number can
be seen as an element of C2. Moreover, the norm of
the bicomplex number is the same as the norm of
the associated element (z1, z2) of C2. It is easy to
see6,8 that C2 is a commutative unitary ring with
the following characterization for the noninvertible
elements:

Proposition 1. Let w = a + bi1 + ci2 + dj ∈ C2.
Then w is noninvertible iff (a = −d and b = c) or
(a = d and b = −c) iff z1

2 + z2
2 = 0.

It is also important to know that every bicomplex
number z1 + z2i2 has the following unique idempo-

tent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2

where e1 = 1+j
2 and e2 = 1−j

2 .
This representation is very useful because: addi-

tion, multiplication and division can be done term-
by-term. Also, an element will be noninvertible iff
z1 − z2i1 = 0 or z1 + z2i1 = 0. The next definition
will be useful to construct a natural “disc” in C2.

Definition 1. We say that X ⊆ C2 is a C2-
cartesian set determined by X1 and X2 if X =
X1 ×e X2 := {z1 + z2i2 ∈ C2 : z1 + z2i2 =
w1e1 + w2e2, (w1, w2) ∈ X1 ×X2}.

In Ref. 6, it is shown that if X1 and X2 are do-
mains of C1 then X1 ×e X2 is also a domain of C2.
Then, a manner to construct a natural “disc” in C2

is to take the C2-cartesian product of two discs in
C1. Hence, we define the natural “disc” of C2 as
follows6: D(0, r) := B1(0, r) ×e B1(0, r) = {z1 +
z2i2 : z1 + z2i2 = w1e1 + w2e2, |w1| < r, |w2| < r}
where Bn(0, r) is the open ball of Cn1 ' Cn with
radius r.

3. THE GENERALIZED
MANDELBROT SET

In this section, we want to give a version of the
Mandelbrot set for the bicomplex numbers. First,
we recall the definition of the Mandelbrot set for
the complex plane:

Definition 2. Let Pc(z) = z2 + c where z, c ∈ C
and P ◦nc := (P

◦(n−1)
c ◦Pc)(z). Then the Mandelbrot

set is defined as follows: M = {c ∈ C : P ◦nc (0) is
bounded ∀n ∈ N}. When we take z, c ∈ C1, we
denote the Mandelbrot set by M1.

Figure 1 gives an illustration of the Mandelbrot
set with some of its “filled-Julia” sets. In fact,
our figure is a rotation by 90◦ of the original Man-
delbrot set. This rotation will give a better van-
tage point when we shall work on our version of
the Mandelbrot set in R3. Also, the colors around
the Mandelbrot set have been determined by the
number of iterations needed before |P ◦nc (0)| > 2.
This is well justified by the fact that the Man-
delbrot set can also be characterized as follows:
M = {c ∈ C : |P ◦nc (0)| ≤ 2 ∀n ∈ N}.11 Then, the
colors give information about the manner in which
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A Generalized Mandelbrot Set For Bicomplex Numbers 357

Fig. 1

the algorithm for the Mandelbrot set diverges to
infinity. This information will be almost the only
possible one to approach our version of the Man-
delbrot set in dimension three.

We also recall the following beautiful property of
the Mandelbrot set:10

Theorem 1.10 The Mandelbrot set M is
connected.

Now, to give a version of the Mandelbrot set for
the bicomplex numbers we have only to reproduce
the algorithm of Definition 2 for the bicomplex num-
bers. This is the next definition.

Definition 3. Let Pc(w) = w2 + c where w, c ∈
C2 and P ◦nc (w) := (P

◦(n−1)
c ◦ Pc)(w). Then the

generalized Mandelbrot set for bicomplex num-
bers is defined as follows: M2 = {c ∈ C2 :
P ◦nc (0) is bounded ∀n ∈ N}.

The next lemma is a characterization of M2

using onlyM1. This lemma will be useful to prove
that M2 is also a connected set.

Lemma 1. M2 =M1 ×eM1.

Proof. First, we prove thatM2 ⊆M1×eM1. Let
c ∈ C2 such that P ◦nc (0) is bounded ∀n ∈ N. We

have

Pc(w) = w2 + c

= [(z1 − z2i1)2 + (c1 − c2i1)]e1

+ [(z1 + z2i1)2 + (c1 + c2i1)]e2

where w = (z1 − z2i1)e1 + (z1 + z2i1)e2 and c =
(c1 − c2i1)e1 + (c1 + c2i1)e2. Then,

P ◦nc (w)=P ◦nc1−c2i1(z1−z2i1)e1+P ◦nc1+c2i1(z1+z2i1)e2 .

By hypothesis,

P ◦nc (0) = P ◦nc1−c2i1(0)e1

+ P ◦nc1+c2i1(0)e2 is bounded ∀n ∈ N.

Hence, P ◦nc1−c2i1(0) and P ◦nc1+c2i1
(0) are also bounded

∀n ∈ N. Then c1 − c2i1, c1 + c2i1 ∈ M1 and
c = (c1 − c2i1)e1 + (c1 + c2i1)e2 ∈M1 ×eM1.

Conversely, if we take c ∈ M1 ×eM1, we have
c = (c1 − c2i1)e1 + (c1 + c2i1)e2 with c1 − c2i1, c1 +
c2i1 ∈ M1. Hence, P ◦nc1−c2i1(0) and P ◦nc1+c2i1(0) are
also bounded ∀n ∈ N. Then P ◦nc (0) is bounded
∀n ∈ N, that is c ∈M2. �

Theorem 2. The generalized Mandelbrot set M2

is connected.

Proof. Define a mapping e as follows:

C2
1 = C1 × C1

e→ C1 ×e C1 = C2

(w1, w2) 7→ w1e1 + w2e2 .

The mapping e is clearly a homeomorphism. Then,
if X1 and X2 are connected subsets of C1 we have
that e(X1×X2) = X1×eX2 is also connected. Now,
by Lemma 1, M2 = M1 ×e M1. Moreover, by
Theorem 1, M1 is connected. It follows, if we let
X1 = X2 =M1, that M2 is connected. �

4. THE TETRABROT

In the previous section, we established a version of
the Mandelbrot set in dimension four. Now, we
want to give a version of the Mandelbrot set in di-
mension three using the definition forM2. The idea
here is to preserve the Mandelbrot set inside M2.
Then, if we restrict the algorithm to the points of
the form a+ bi1 + ci2 where a, b, c ∈ R, we preserve
the Mandelbrot set on two perpendicular complex
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358 D. Rochon

planes and we stay in R3. This is the first argument
to justify the following definition.

Definition 4. The “Tetrabrot” is defined as fol-
lows: T = {c = c1 + c2i2 ∈ C2 : Im(c2) = 0 and
P ◦nc (0) is bounded ∀n ∈ N}.

We wish to give an illustration of the Tetrabrot
in R3. The next result will give a manner to ap-
proach the Tetrabrot with the Euclidean norm in
R4.

Theorem 3. M2 ⊂ D̄(0, 2) ⊂ B2(0, 2) where

D̄(0, 2) = B1(0, 2)×e B1(0, 2). Moreover, the ra-
dius 2 is the best possible in each case.

Proof. By Lemma 1, M2 = M1 ×eM1. More-
over, D̄(0, 2) = B1(0, 2) ×e B1(0, 2) and M1 ⊂
B1(0, 2) with a point of M1 which touches the
boundary of this disc.11 Then, M2 ⊂ D̄(0, 2) and
the radius 2 is the best possible. Finally, it is
proven in Ref. 6 that D̄(0, 2) ⊂ B2(0, 2) with
points of D̄(0, 2) which touch the boundary of

B2(0, 2). �

Then, it is possible to compute the infinite diver-
gence layers of the Tetrabrot from the number of
iterations needed to have |P ◦nc (0)| > 2. We have

Fig. 2

Fig. 3

to remark here that each divergence layer will hide
the others. For example, Fig. 2 is an illustration for
the Tetrabrot of one of its divergence layers in cor-
respondence with the divergence layer illustrated in
Fig. 1(A) for the Mandelbrot set. In fact, the Tetra-
brot is inside Fig. 2. It is possible to see a part of the
Tetrabrot (see Fig. 3) if we cut a piece of Fig. 2. In
Fig. 3, the colors are an illustration of the other di-
vergence layers. It is also possible to compute other
divergence layers (see Figs. 4–7). Figure 7 begins to
be close to the set we wish to approach; then Fig. 7
with its cut plane gives certainly a good idea of the
Tetrabrot.

To define the Tetrabrot, we have put the last co-
ordinate in “j” equal to zero. In fact it is possible
to do the same thing if we fix the last coordinate
equal to a number different from zero. However, if
we do that, we lose the beautiful symmetry of the
Tetrabrot. Figures 8 and 9 give an illustration of
this phenomenon for two different fixed “dj” with
d 6= 0.

An interesting exploration of the Tetrabrot is
now possible. For example, Fig. 10 is an enlarge-
ment of Fig. 7(A). It is also possible to be more
specific. For example, Fig. 14 is an enlargement
of 10(A) and Figs. 11 and 12 are an enlargement of
deep zones above the zone of Fig 7(A). Also, Fig. 13
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Fig. 4 Fig. 6

Fig. 5 Fig. 7
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360 D. Rochon

Fig. 8 Fig. 10

Fig. 9 Fig. 11
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A Generalized Mandelbrot Set For Bicomplex Numbers 361

Fig. 12

Fig. 13

Fig. 14

is an enlargement of Fig. 7(B). The color in the
background of Fig. 14 has been added to give a bet-
ter 3-D view. Each figure has been illustrated with
a selected divergence layer and striations have been
added to give an illustration of the “level curves” of
each figure.

5. THE GENERALIZED
“FILLED-JULIA” SET

It is now interesting to see what happens with the
Julia set. First, we recall the definition of the
“filled-Julia” set in the complex plane:

Definition 5. The “filled-Julia” set is defined as
follows: (c ∈ C)

Kc = {z ∈ C : P ◦nc (z) is bounded ∀n ∈ N} .

Moreover, the Julia set Jc := ∂Kc.

We recall also the following beautiful relationship
between the Mandelbrot set and the “filled-Julia”
set:

Theorem 4. c ∈M⇔ Kc is connected.

It is possible to generalize the “filled-Julia” set for
bicomplex numbers:

Definition 6. The generalized “filled-Julia” set for
bicomplex numbers is defined as follows: (c ∈ C2)

K2,c = {w ∈ C2 : P ◦nc (w) is bounded ∀n ∈ N} .

The next lemma gives a characterization of the
“filled-Julia” set for bicomplex numbers in terms of
the “filled-Julia” set for the complex plane. This
lemma will be useful to give an analogue of Theo-
rem 4 for the bicomplex numbers.

Lemma 2. K2,c = K2,(c1−c2i1)e1+(c1+c2i1)e2 =
Kc1−c2i1 ×e Kc1+c2i1 .

Proof. The proof is along the same lines as the
proof of the Lemma 1. �

Theorem 5. c ∈M2 ⇔ K2,c is connected.

Proof. By Lemma 2, we know that K2,c =
Kc1−c2i1 ×e Kc1+c2i1 . Also, by the homeomorphism
in the proof of Theorem 2, Kc1−c2i1 ×e Kc1+c2i1 is
connected if and only if Kc1−c2i1 × Kc1+c2i1 is con-
nected. Then, Kc1−c2i1 ×e Kc1+c2i1 is connected if
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362 D. Rochon

and only if Kc1−c2i1 and Kc1+c2i1 are connected.
Hence, by Theorem 4, K2,c is connected if and
only if c1 − c2i1, c1 + c2i1 ∈ M1. Therefore, by
Lemma 1, K2,c is connected if and only if c =
(c1 − c2i1)e1 + (c1 + c2i1)e2 ∈M2. �

6. THE “FILLED-JULIA” SET
FOR THE TETRABROT

The same process as for the Tetrabrot yields a ver-
sion of the “filled-Julia” set in R3. We define the
“filled-Julia” set for the Tetrabrot.

Definition 7. The associated “filled-Julia” set for
the Tetrabrot is defined as follows: (c ∈ C2)

L2,c = {w = w1 + w2i2 ∈ C2 : Im(w2) = 0

and P ◦nc (w) is bounded ∀n ∈ N} .

Figure 15 is an illustration of the “filled-Julia” set
for the Tetrabrot at the same point c = −1.754878
as the “filled-Julia” set B of Fig. 1. Hence, Fig. 15 is
a kind of generalization of the “filled-Julia” set Kc
in the complex plane. In the same manner, Fig. 16
is the generalization of Fig. 1(C), and Fig. 17 the
generalization of Fig. 1(D).

In Ref. 11, L. Carleson and T. W. Gamelin (1993)
have remarked this interesting fact: “One striking
feature of M is that shapes of certain of the Julia

Fig. 15

Fig. 16

Fig. 17

sets Jc in dynamic space (z-space) are reflected in
the shape (c-shape)”. For the Tetrabrot, we seem
to have something similar. For example, Fig. 18 is
Fig. 17 with the same kind of cut as for the Tetra-
brot in Fig. 7. Hence we see that inside Fig. 17,
we have the same shape as inside the Tetrabrot
near the point c = 0.25. It is also possible to see
the same phenomenon with the “filled-Julia” set of
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Fig. 18

Fig. 19

Fig. 16. This phenomenon has been illustrated in
Fig. 19 where we have put together the border of
the Tetrabrot and the associated “filled-Julia” set
at the point c = −1.16 − 0.25i1 on the border. We
see clearly that this “filled-Julia” set imitates the
border of the Tetrabrot.

Fig. 20

Fig. 21

Finally, in Figs. 20–23, we show the “filled-Julia”
set at c = −i1 for different infinite divergence layers.
We remark that Fig. 23 is a good approximation of
this set and an interesting generation of Fig. 1-E.
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364 D. Rochon

Fig. 22

Fig. 23

7. CONJECTURE

We have proved in Sec. 3 that M2 is a connected
set. It is natural to ask whether the Tetrabrot is
also connected. Until now, the exploration of the
Tetrabrot seems to confirm that the Tetrabrot is
connected. However, if we enlarge Fig. 7 in the
center of the Tetrabrot above the zone B, we notice
[see Fig. 24(A)] that there is a piece which seems

Fig. 24

to be disconnected from the main figure (Fig. 25
focuses on this piece). Because we work with diver-
gence layers and a computational approximation,
we are far from knowing if the piece is really uncon-
nected or if there is point inside the piece which is
also inside the Tetrabrot. However this is enough
to formulate a conjecture:

Conjecture 1. The Tetrabrot is unconnected.

It is possible to translate the conjecture into a
question about the geometry of the Mandelbrot set.
For this, we need to prove the following lemma
which is itself of interest:

Lemma 3. The Tetrabrot can be characterized as
follows:

T =
⋃

y∈[−m,m]

{[(M1 − yi1) ∩ (M1 + yi1)] + yi2}

where m := sup{q ∈ R : ∃p ∈ R such that p +
qi1 ∈M1}.

Proof. By definition,

T = {c = c1 + c2i2 ∈ C2 : Im(c2) = 0

and P ◦nc (0) is bounded ∀n ∈ N} .

Let c = (c1 − c2i1)e1 + (c1 + c2i1)e2 with c1 =
c11 + c12i1 and c2 = c21 + c22i1 where c11, c12,
c21, c22 ∈ R. Now, if Im(c2) = 0, we have
c2 = c21 + 0i1 and therefore, c = (c1 − c21)e1 +
(c1 + c21i1)e2 whenever Im(c2) = 0. Hence T =
{(c1 − c21i1)e1 + (c1 + c21i1)e2 : P ◦nc (0) is bounded
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Fig. 25

∀n ∈ N} = {(c1 − c21i1)e1 + (c1 + c21i1)e2 :
P ◦nc1−c21i1

(0) and P ◦nc1+c21i1
(0) are bounded ∀n ∈ N}.

To continue the proof, we need to remark the fol-
lowing fact: ∀z ∈ C1,

{c ∈ C1 : P ◦nc+z(0) is bounded ∀n ∈ N} =M1 − z .

By definition, P ◦nc1−c21i1
(0) and P ◦nc1+c21i1

(0) are
bounded ∀n ∈ N if and only if c1−c21i1, c1 +c21i1 ∈
M1, and by the remark, it is also if and only if
c1 ∈ (M1 − c21i1) ∩ (M1 + c21i1). Hence, if we
express (c1 − c21i1)e1 + (c1 + c21)e2 = c1 + c21i2
= c11 + c12i1 + c21i2, the Tetrabrot can be
characterized as follows:

T = {c11 + c12i1 + c21i2 : c11 + c12i1

∈ (M1 − c21i1) ∩ (M1 + c21i1)}

=
⋃
y∈R
{[(M1 − yi1) ∩ (M1 + yi1)] + yi2} .

It is possible to be more precise with the last ex-

pression. In fact,

=
⋃

y∈[−m,m]

{[(M1 − yi1) ∩ (M1 + yi1)] + yi2}

because (M1 − yi1) ∩ (M1 + yi1) = ∅ whenever
y ∈ [−m, m]c. This comes from the fact that
M1 ⊂ {z ∈ C1 : |Im(z)| ≤ m}.

Moreover, (M1 − yi1) ∩ (M1 + yi1) 6= ∅ ∀y ∈
[−m, m]. To see this, we just have to prove that
Ey := {c = c11 + 0i1 + yi2 : P ◦nc (0) is bounded
∀n ∈ N} is nonempty ∀y ∈ [−m, m] because
Ey ⊂ {c = c11 + c12i1 + c21i2 : P ◦nc (0) is bounded
∀n ∈ N} = {c11 + c12i1 + c21i2 : c11 + c12i1 ∈
(M1 − c21i1) ∩ (M1 + c21i1)}. In fact, the set Ey
is the algorithm for the Mandelbrot set iterates,
with the imaginary part in “i2” fixed at y. By the
compactness and the symmetry of the Mandelbrot
set M1, there must exist xm such that xm −mi2,
xm + mi2 ∈ Em. Therefore, because M1 is con-
nected, we must have Ey 6= ∅ ∀y ∈ [−m, m].
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366 D. Rochon

Theorem 6. Let

R1 := R(−1.3939 + 0.0848i1; −1.3893 + 0.0803i1)

L := R(−1.3939 + 0.0803i1; −1.3939 + 0.0728i1)

R2 := R(−1.3939 + 0.0728i1; −1.3893 + 0.0683i1)

L3 := R(−1.3939 + 0.1304i1; −1.3893 + 0.1304i1)

L4 := R(−1.3939 + 0.1259i1; −1.3893 + 0.1259i1)

L5 := R(−1.3893 + 0.1304i1; −1.3893 + 0.1259i1)

L6 := R(−1.3939 + 0.1304i1; −1.3939 + 0.1259i1)

where

R(a+ bi1, c+ di1)

:=

{
α1(a+ bi1) + α2(c+ bi1) + α3(a+ di1)

+α4(c+ di1)|
4∑

i=1

αi = 1, αi ≥ 1

}
.

If
F1 := R1 ∪ L ∪R2

and
F2 := L3 ∪ L4 ∪ L5

are disjoint from the Mandelbrot set, and

z∗1 := −1.391816306 + 0.129472959i1

and

z∗2 := −1.392873019 + 0.077172405i1

are inside the Mandelbrot set, then the Tetrabrot is
unconnected.

Proof. The goal of the proof is to construct, from
the hypothesis about the Mandelbrot set, a box
where the algorithm for the Tetrabrot diverges with,
inside the box, a point where the algorithm con-
verges. The box that we want to construct is a
box around the piece of Fig. 25. Also, to under-
stand better with which zones we work, Fig. 26(A)
gives an indication where the zones of the hypoth-
esis are on the Mandelbrot set (Figs. 27–29 are en-
largements of Fig. 26(A) where the specific sets F1,
F2, z∗1 and z∗2 are illustrated).

The “box of divergence” is constructed as follows:
let y1 := 0.0228 and y2 := 0.0288,

Bi := Ri + yii1 − yii2 for i = 1, 2 ,

Bi :=
⋃

y∈[y1,y2]

(Li − yi1 − yi2) for i = 3, . . . , 6 .

Fig. 26

Fig. 27

Fig. 28
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Fig. 29

Each “Bi” is a side of the box; then the “box of
divergence” is B :=

⋃6
i=1Bi.

First, we have to confirm that each “Bi” is a
set where the algorithm for the Tetrabrot diverges.
This is possible with Lemma 3 and the assumption
that F1 ∪ F2 is not in the Mandelbrot set.

For B1, by Lemma 3, we just need to prove that:

B1 ∩ ([(M1 − y1i1) ∩ (M1 + y1i1)]− y1i2) = ∅ .

This is clear because if B1 ∩ ([(M1− y1i1)∩ (M1 +
y1i1)] − y1i2) 6= ∅, we obtain that there exists z1 ∈
R1 such that z1 +y1i1 ∈ [(M1−y1i1)∩(M1 +y1i1)].
However, this is impossible because if z1 + y1i1 ∈
M1 +y1i1 we obtain that z1 ∈M1 and this contra-
dicts the hypothesis.

A similar proof is possible for B2. The cases of
B3, B4 and B5 are also along the same lines. For
example:

B3 ∩ ([(M1 − yi1) ∩ (M1 + yi1)]− yi2) = ∅
∀y ∈ [y1, y2]

because if it is not true, there must exist y ∈ [y1, y2]
and z3 ∈ L3 such that z3 − yi1 ∈ [(M1 − yi1) ∩
(M1 + yi1)]. However, this is impossible because if
z3 − yi1 ∈ M1 − yi1, we obtain that z3 ∈ M1 and
this contradicts the hypothesis. For B6, the same
argument is possible if we remark that L6 − yi1 ⊂
F1 + yi1 ∀y ∈ [y1, y2].

Now, we have to confirm that each Bi is on the
same box. For this, we will just remark the follow-
ing fact:

Li − yki1 − yki2 ⊂ Bk = Rk + yki1 − yki2

∀i = 3, . . . , 6 and ∀k = 1, 2

because Li − yki1 ⊂ Rk + yki1 ∀i = 3, . . . , 6 and
∀k = 1, 2. Then each Bi, for i = 3, . . . , 6, touches
B1 and B2 at their extremity. To be more specific
and to confirm that the Bi form a box, we have to
check directly with the exact coordinates given in
the hypothesis of the theorem.

Finally, we have to prove, with the assumptions
of the theorem, that there is a point inside the box
B for which the algorithm for the Tetrabrot con-
verges. For this, we remark that z∗2 is between R1

and R2. Moreover, Re(z∗1) > Re(z∗2); then we must
have in the set A := {x + yi1 ∈ C1 : x = Re(z∗1)
and 0.0728 < y < 0.0803} a point z∗ ∈ M1. If
not, by hypothesis, the Mandelbrot set would not
be connected because z∗2 would be separated from
z∗1 by F1 ∪A since (F1 ∪A) ∩M1 = ∅.

Now, let

y∗ :=
Im(z∗1)− Im(z∗)

2

where z∗1 , z
∗ ∈ M1. We note that z∗1 − y∗i1 =

z∗ + y∗i1 and y∗ ∈ [−1, 1] ⊂ [−m, m]. Then by
Lemma 3, z∗1 − y∗i1 − y∗i2 ∈ T because z∗1 − y∗i1 −
y∗i2 = z∗+y∗i1−y∗i2 ∈ [(M1−y∗i1)∩(M1+y∗i1)]−
y∗i2 ⊂ T . Moreover, z∗1 − y∗i1 − y∗i2 is inside the
“box of divergence” because y1 < y∗ < y2 and z∗1 is
inside the rectangle formed by L3 ∪ L4 ∪ L5 ∪ L6.

�

8. CONCLUSION

The last theorem is a good indication that the con-
jecture is true because the hypothesis about the
Mandelbrot set can be approximately confirmed by
computers with a high level of precision. To confirm
that the conjecture is true, we have two choices —
to demonstrate theoretically the hypothesis about
the geometry of the Mandelbrot set or to prove more
directly that the Tetrabrot is unconnected. If the
conjecture is proven to be true, a new question could
be to know the cardinality of the family of the con-
nected components. Also, it could be interesting
to know whether the “filled-Julia” set associated
with points on an unconnected piece of the Tetra-
brot have some specific proporties such as to be
also unconnected. Finally, another pertinent ques-
tion could be to know the local fractal dimension of
the boundary of the Tetrabrot.
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