On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation

Dominic Rochon, Ph.D.

Département de Mathématiques et d'Informatique Université du Québec à Trois-Rivières

September 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Preliminaries

- Bicomplex Numbers
- Bicomplex Differentiability

2 Bicomplex Pseudoanalytic Functions

- Elementary Bicomplex Operators
- Bicomplex Generalization of Function Theory
- 3 The Complexified Schrödinger Equation

(人間) トイヨト イヨト

Definition

Bicomplex numbers are defined as

$$\mathbb{T} := \{ z_1 + z_2 \mathbf{i}_2 \mid z_1, z_2 \in \mathbb{C}(\mathbf{i}_1) \}$$

$$\tag{1}$$

where the imaginary units i_1,i_2 and j are governed by the rules: $i_1^2=i_2^2=-1,\,j^2=1$ and

• Note that we define $\mathbb{C}(\mathbf{i}_k) := \{x + y\mathbf{i}_k \mid \mathbf{i}_k^2 = -1 \text{ and } x, y \in \mathbb{R}\}$ for k = 1, 2.

Definition

Bicomplex numbers are defined as

$$\mathbb{T} := \{ z_1 + z_2 \mathbf{i}_2 \mid z_1, z_2 \in \mathbb{C}(\mathbf{i}_1) \}$$

$$\tag{1}$$

where the imaginary units i_1,i_2 and j are governed by the rules: $i_1^2=i_2^2=-1,\,j^2=1$ and

• Note that we define $\mathbb{C}(\mathbf{i}_k) := \{x + y\mathbf{i}_k \mid \mathbf{i}_k^2 = -1 \text{ and } x, y \in \mathbb{R}\}$ for k = 1, 2.

In fact, the bicomplex numbers

 $\mathbb{T}\cong \operatorname{Cl}_{\mathbb{C}}(1,0)\cong \operatorname{Cl}_{\mathbb{C}}(0,1)$

are *unique* among the complex Clifford algebras in that they are commutative but not division algebras. It is also convenient to write the set of bicomplex numbers as

$$\mathbb{T} := \{ w_0 + w_1 \mathbf{i}_1 + w_2 \mathbf{i}_2 + w_3 \mathbf{j} \mid w_0, w_1, w_2, w_3 \in \mathbb{R} \}.$$
(3)

In particular, if we put z₁ = x and z₂ = yi₁ with x, y ∈ ℝ in z₁ + z₂i₂, then we obtain the following subalgebra of hyperbolic numbers, also called duplex numbers:

$$\mathbb{D} := \{ x + y\mathbf{j} \mid \mathbf{j}^2 = 1, \ x, y \in \mathbb{R} \} \cong \mathrm{Cl}_{\mathbb{R}}(0, 1).$$

(4 同) トイヨト イヨト

In fact, the bicomplex numbers

$$\mathbb{T}\cong \operatorname{Cl}_{\mathbb{C}}(1,0)\cong \operatorname{Cl}_{\mathbb{C}}(0,1)$$

are *unique* among the complex Clifford algebras in that they are commutative but not division algebras. It is also convenient to write the set of bicomplex numbers as

$$\mathbb{T} := \{ w_0 + w_1 \mathbf{i}_1 + w_2 \mathbf{i}_2 + w_3 \mathbf{j} \mid w_0, w_1, w_2, w_3 \in \mathbb{R} \}.$$
(3)

In particular, if we put z₁ = x and z₂ = yi₁ with x, y ∈ ℝ in z₁ + z₂i₂, then we obtain the following subalgebra of hyperbolic numbers, also called duplex numbers:

$$\mathbb{D} := \{ x + y\mathbf{j} \mid \mathbf{j}^2 = 1, \ x, y \in \mathbb{R} \} \cong \mathrm{Cl}_{\mathbb{R}}(0, 1).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Complex conjugation plays an important role both for algebraic and geometric properties of C. For bicomplex numbers, there are three possible conjugations. Let w ∈ T and z₁, z₂ ∈ C(i₁) such that w = z₁ + z₂i₂. Then we define the three conjugations as:

$$w^{\dagger_1} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_1} := \overline{z}_1 + \overline{z}_2 \mathbf{i}_2, \tag{4a}$$

$$w^{\dagger_2} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_2} := z_1 - z_2 \mathbf{i}_2,$$
 (4b)

$$w^{\dagger_3} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_3} := \overline{z}_1 - \overline{z}_2 \mathbf{i}_2,$$
 (4c)

where \overline{z}_k is the standard complex conjugate of complex numbers $z_k \in \mathbb{C}(\mathbf{i_1})$.

イロト イポト イラト イラト

Complex conjugation plays an important role both for algebraic and geometric properties of C. For bicomplex numbers, there are three possible conjugations. Let w ∈ T and z₁, z₂ ∈ C(i₁) such that w = z₁ + z₂i₂. Then we define the three conjugations as:

$$w^{\dagger_1} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_1} := \overline{z}_1 + \overline{z}_2 \mathbf{i}_2, \tag{4a}$$

$$w^{\dagger_2} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_2} := z_1 - z_2 \mathbf{i}_2,$$
 (4b)

$$w^{\dagger_3} = (z_1 + z_2 \mathbf{i}_2)^{\dagger_3} := \overline{z}_1 - \overline{z}_2 \mathbf{i}_2, \qquad (4c)$$

where \overline{z}_k is the standard complex conjugate of complex numbers $z_k \in \mathbb{C}(\mathbf{i_1})$.

We know that the product of a standard complex number with its conjugate gives the square of the Euclidean metric in \mathbb{R}^2 . The analogs of this, for bicomplex numbers, are the following. Let $z_1, z_2 \in \mathbb{C}(\mathbf{i_1})$ and $w = z_1 + z_2 \mathbf{i_2} \in \mathbb{T}$, then we have that:

$$|w|_{\mathbf{i}_1}^2 := w \cdot w^{\dagger_2} \in \mathbb{C}(\mathbf{i}_1), \tag{5a}$$

$$|w|_{\mathbf{i}_2}^2 := w \cdot w^{\dagger_1} \in \mathbb{C}(\mathbf{i}_2), \tag{5b}$$

$$|w|_{\mathbf{j}}^2 := w \cdot w^{\dagger_3} \in \mathbb{D}.$$
 (5c)

伺い イラト イラト

• It is also important to know that every bicomplex number $z_1 + z_2 i_2$ has the following unique idempotent representation:

$$z_1 + z_2 \mathbf{i_2} = (z_1 - z_2 \mathbf{i_1}) \mathbf{e_1} + (z_1 + z_2 \mathbf{i_1}) \mathbf{e_2}.$$
 (6)

where
$$\mathbf{e_1} = \frac{1+\mathbf{j}}{2}$$
 and $\mathbf{e_2} = \frac{1-\mathbf{j}}{2}$.

- This representation is very useful because: addition, multiplication and division can be done term-by-term. Also, an element will be non-invertible if and only if $z_1 z_2i_1 = 0$ or $z_1 + z_2i_1 = 0$.
- We say that X ⊆ T is a T-cartesian set determined by X₁ and X₂ if X = X₁ ×_e X₂ where

 $X_1 \times_e X_2 := \{ z_1 + z_2 \mathbf{i}_2 \in \mathbb{T} : z_1 + z_2 \mathbf{i}_2 = w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2, (w_1, w_2) \in X_1 \times X_2 \}.$

イロト イポト イラト イラト

SOR

• It is also important to know that every bicomplex number $z_1 + z_2 i_2$ has the following unique idempotent representation:

$$z_1 + z_2 \mathbf{i_2} = (z_1 - z_2 \mathbf{i_1}) \mathbf{e_1} + (z_1 + z_2 \mathbf{i_1}) \mathbf{e_2}.$$
 (6)

where $e_1=\frac{1+j}{2}$ and $e_2=\frac{1-j}{2}.$

- This representation is very useful because: addition, multiplication and division can be done term-by-term. Also, an element will be non-invertible if and only if $z_1 z_2 \mathbf{i}_1 = 0$ or $z_1 + z_2 \mathbf{i}_1 = 0$.
- We say that X ⊆ T is a T-cartesian set determined by X₁ and X₂ if X = X₁ ×_e X₂ where

 $X_1 \times_e X_2 := \{ z_1 + z_2 \mathbf{i}_2 \in \mathbb{T} : z_1 + z_2 \mathbf{i}_2 = w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2, (w_1, w_2) \in X_1 \times X_2 \}.$

= nan

• It is also important to know that every bicomplex number $z_1 + z_2 i_2$ has the following unique idempotent representation:

$$z_1 + z_2 \mathbf{i_2} = (z_1 - z_2 \mathbf{i_1}) \mathbf{e_1} + (z_1 + z_2 \mathbf{i_1}) \mathbf{e_2}.$$
 (6)

where $e_1=\frac{1+j}{2}$ and $e_2=\frac{1-j}{2}.$

- This representation is very useful because: addition, multiplication and division can be done term-by-term. Also, an element will be non-invertible if and only if $z_1 z_2 i_1 = 0$ or $z_1 + z_2 i_1 = 0$.
- We say that $X \subseteq \mathbb{T}$ is a \mathbb{T} -cartesian set determined by X_1 and X_2 if $X = X_1 \times_e X_2$ where

$$X_1 \times_e X_2 := \{ z_1 + z_2 \mathbf{i}_2 \in \mathbb{T} : z_1 + z_2 \mathbf{i}_2 = w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2, (w_1, w_2) \in X_1 \times X_2 \}.$$

= nan

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Bicomplex Numbers Bicomplex Differentiability

Preliminaries

- Bicomplex Numbers
- Bicomplex Differentiability

Bicomplex Pseudoanalytic Functions

- Elementary Bicomplex Operators
- Bicomplex Generalization of Function Theory
- 3 The Complexified Schrödinger Equation

(人間) トイヨト イヨト

Definition

Let U be an open set of \mathbb{T} and $w_0 \in U$. Then, $f: U \subseteq \mathbb{T} \longrightarrow \mathbb{T}$ is said to be \mathbb{T} -differentiable at w_0 with derivative equal to $f'(w_0) \in \mathbb{T}$ if

$$\lim_{\substack{w \to w_0 \\ w \to w_0 \text{ inv.} \end{pmatrix}} \frac{f(w) - f(w_0)}{w - w_0} = f'(w_0).$$

• We also say that the function f is T-holomorphic on an open set U if and only if f is T-differentiable at each point of U.

Definition

Let U be an open set of \mathbb{T} and $w_0 \in U$. Then, $f : U \subseteq \mathbb{T} \longrightarrow \mathbb{T}$ is said to be \mathbb{T} -differentiable at w_0 with derivative equal to $f'(w_0) \in \mathbb{T}$ if

$$\lim_{w \to w_0 \atop w \to w_0 \text{ inv.}} \frac{f(w) - f(w_0)}{w - w_0} = f'(w_0).$$

• We also say that the function f is T-holomorphic on an open set U if and only if f is T-differentiable at each point of U.

(日) (同) (日) (日)

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Bicomplex Numbers Bicomplex Differentiability

• As we saw, a bicomplex number can be seen as an element of \mathbb{C}^2 , so a function $f(z_1 + z_2 \mathbf{i}_2) = f_1(z_1, z_2) + f_2(z_1, z_2) \mathbf{i}_2$ of \mathbb{T} can be seen as a mapping $f(z_1, z_2) = (f_1(z_1, z_2), f_2(z_1, z_2))$ of \mathbb{C}^2 . Here we have a characterization of such mappings:

Theorem

Let U be an open set and $f : U \subseteq \mathbb{T} \longrightarrow \mathbb{T}$. Let also $f(z_1 + z_2 \mathbf{i}_2) = f_1(z_1, z_2) + f_2(z_1, z_2)\mathbf{i}_2$. Then f is T-holomorphic on U if and only if:

 f_1 and f_2 are holomorphic in z_1 and z_2

and,

$$\frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}$$
 and $\frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2}$ on U.

Moreover, $f' = \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_1} \mathbf{i}_2$ and f'(w) is invertible if and only if $det \mathcal{J}_f(w) \neq 0$.

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Bicomplex Numbers Bicomplex Differentiability

• As we saw, a bicomplex number can be seen as an element of \mathbb{C}^2 , so a function $f(z_1 + z_2 \mathbf{i}_2) = f_1(z_1, z_2) + f_2(z_1, z_2) \mathbf{i}_2$ of \mathbb{T} can be seen as a mapping $f(z_1, z_2) = (f_1(z_1, z_2), f_2(z_1, z_2))$ of \mathbb{C}^2 . Here we have a characterization of such mappings:

Theorem

Let U be an open set and $f: U \subseteq \mathbb{T} \longrightarrow \mathbb{T}$. Let also $f(z_1 + z_2 \mathbf{i}_2) = f_1(z_1, z_2) + f_2(z_1, z_2) \mathbf{i}_2$. Then f is \mathbb{T} -holomorphic on U if and only if:

 f_1 and f_2 are holomorphic in z_1 and z_2

and,

$$\frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2} \text{ and } \frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2} \text{ on } \mathsf{U}.$$

Moreover, $f' = \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_1} \mathbf{i}_2$ and f'(w) is invertible if and only if $det \mathcal{J}_f(w) \neq 0$.

\bullet Hence, it is natural to define the corresponding class of mappings for \mathbb{C}^2 :

Definition

The class of \mathbb{T} -holomorphic mappings on a open set $U \subseteq \mathbb{C}^2$ is defined as follows:

$$TH(U) := \{ f : U \subseteq \mathbb{C}^2 \longrightarrow \mathbb{C}^2 | f \in H(U) \text{ and } \frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}, \ \frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2} \}.$$

It is the subclass of holomorphic mappings of \mathbb{C}^2 satisfying the complexified Cauchy-Riemann equations.

• We remark that $f \in TH(U)$ in terms of \mathbb{C}^2 if and only if f is \mathbb{T} -differentiable on U.

(日) (同) (日) (日)

 \bullet Hence, it is natural to define the corresponding class of mappings for \mathbb{C}^2 :

Definition

The class of \mathbb{T} -holomorphic mappings on a open set $U \subseteq \mathbb{C}^2$ is defined as follows:

$$TH(U) := \{ f : U \subseteq \mathbb{C}^2 \longrightarrow \mathbb{C}^2 | f \in H(U) \text{ and } \frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}, \ \frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2} \}.$$

It is the subclass of holomorphic mappings of \mathbb{C}^2 satisfying the complexified Cauchy-Riemann equations.

• We remark that $f \in TH(U)$ in terms of \mathbb{C}^2 if and only if f is \mathbb{T} -differentiable on U.

 \bullet Hence, it is natural to define the corresponding class of mappings for \mathbb{C}^2 :

Definition

The class of \mathbb{T} -holomorphic mappings on a open set $U \subseteq \mathbb{C}^2$ is defined as follows:

$$TH(U) := \{ f : U \subseteq \mathbb{C}^2 \longrightarrow \mathbb{C}^2 | f \in H(U) \text{ and } \frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}, \ \frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2} \}.$$

It is the subclass of holomorphic mappings of \mathbb{C}^2 satisfying the complexified Cauchy-Riemann equations.

• We remark that $f \in TH(U)$ in terms of \mathbb{C}^2 if and only if f is \mathbb{T} -differentiable on U.

イロト イポト イラト イラト

Preliminaries

- Bicomplex Numbers
- Bicomplex Differentiability

2 Bicomplex Pseudoanalytic Functions

- Elementary Bicomplex Operators
- Bicomplex Generalization of Function Theory
- 3 The Complexified Schrödinger Equation

• We will first consider the variable $z = x + y\mathbf{i_1}$, where x and y are real variables and the corresponding formal differential operators

$$\partial_{\bar{z}} = \frac{1}{2} \left(\partial_x + \mathbf{i}_1 \partial_y \right) \text{ and } \partial_z = \frac{1}{2} \left(\partial_x - \mathbf{i}_1 \partial_y \right).$$

Notation $f_{\bar{z}}$ or f_z means the application of $\partial_{\bar{z}}$ or ∂_z respectively to a bicomplex function $f(z) = u(z) + v(z)\mathbf{i}_1 + r(z)\mathbf{i}_2 + s(z)\mathbf{j}$. The derivatives f_z , $f_{\bar{z}}$ "exist" if and only if f_x and f_y do.

In view of these operators,

 $f_{\overline{z}}(z) = 0 \Leftrightarrow \partial_{\overline{z}}[u(z) + v(z)\mathbf{i}_1] = 0 \text{ and } \partial_{\overline{z}}[r(z) + s(z)\mathbf{i}_1] = 0.$ (7)

i.e. $u_x = v_y, v_x = -u_y$ and $r_x = s_y, s_x = -r_y$ at $z \in \mathbb{C}(\mathbf{i_1})$.

化口油 化晶体 化压体 化压体

• We will first consider the variable $z = x + y\mathbf{i_1}$, where x and y are real variables and the corresponding formal differential operators

$$\partial_{\bar{z}} = \frac{1}{2} \left(\partial_x + \mathbf{i}_1 \partial_y \right)$$
 and $\partial_z = \frac{1}{2} \left(\partial_x - \mathbf{i}_1 \partial_y \right)$.

Notation $f_{\bar{z}}$ or f_z means the application of $\partial_{\bar{z}}$ or ∂_z respectively to a bicomplex function $f(z) = u(z) + v(z)\mathbf{i}_1 + r(z)\mathbf{i}_2 + s(z)\mathbf{j}$. The derivatives f_z , $f_{\bar{z}}$ "exist" if and only if f_x and f_y do.

In view of these operators,

$$f_{\overline{z}}(z) = 0 \Leftrightarrow \partial_{\overline{z}}[u(z) + v(z)\mathbf{i}_1] = 0 \text{ and } \partial_{\overline{z}}[r(z) + s(z)\mathbf{i}_1] = 0.$$
(7)

i.e. $u_x = v_y, v_x = -u_y$ and $r_x = s_y, s_x = -r_y$ at $z \in \mathbb{C}(\mathbf{i_1})$.

イロト イポト イヨト イヨト

SOR

We will now consider the bicomplex variable $\omega = z_1 + z_2 \mathbf{i}_2$, where $z_1 = x_1 + y_1 \mathbf{i}_1, z_2 = x_2 + y_2 \mathbf{i}_1 \in \mathbb{C}(\mathbf{i}_1)$ and the corresponding formal differential operators

$$\partial_{\bar{\omega}} = \partial_{\omega^{\dagger_2}} = \frac{1}{2} \left(\partial_{z_1} + \mathbf{i}_2 \partial_{z_2} \right), \quad \partial_{\omega} = \partial_{\omega^{\dagger_0}} = \frac{1}{2} \left(\partial_{z_1} - \mathbf{i}_2 \partial_{z_2} \right)$$
$$\partial_{\omega^{\dagger_3}} = \frac{1}{2} \left(\partial_{\bar{z}_1} + \mathbf{i}_2 \partial_{\bar{z}_2} \right) \quad \text{and} \quad \partial_{\omega^{\dagger_1}} = \frac{1}{2} \left(\partial_{\bar{z}_1} - \mathbf{i}_2 \partial_{\bar{z}_2} \right).$$

• Notation $f_{\omega^{\dagger_k}}$ for k = 0, 1, 2, 3 means the application of $f_{\omega^{\dagger_k}}$ respectively to a bicomplex function

$$f(\omega) = u(\omega) + v(\omega)\mathbf{i}_1 + r(\omega)\mathbf{i}_2 + s(\omega)\mathbf{j}.$$

The derivatives $f_{\omega^{\dagger}k}$ "exist" for k = 0, 1, 2, 3 if and only if f_{x_l} and f_{y_l} exist for l = 1, 2. These bicomplex operators act on sums, products, etc. just as an ordinary derivative and we have the following result in the bicomplex function theory.

We will now consider the bicomplex variable $\omega = z_1 + z_2 \mathbf{i}_2$, where $z_1 = x_1 + y_1 \mathbf{i}_1, z_2 = x_2 + y_2 \mathbf{i}_1 \in \mathbb{C}(\mathbf{i}_1)$ and the corresponding formal differential operators

$$\partial_{\bar{\omega}} = \partial_{\omega^{\dagger_2}} = \frac{1}{2} \left(\partial_{z_1} + \mathbf{i}_2 \partial_{z_2} \right), \quad \partial_{\omega} = \partial_{\omega^{\dagger_0}} = \frac{1}{2} \left(\partial_{z_1} - \mathbf{i}_2 \partial_{z_2} \right)$$
$$\partial_{\omega^{\dagger_3}} = \frac{1}{2} \left(\partial_{\bar{z}_1} + \mathbf{i}_2 \partial_{\bar{z}_2} \right) \quad \text{and} \quad \partial_{\omega^{\dagger_1}} = \frac{1}{2} \left(\partial_{\bar{z}_1} - \mathbf{i}_2 \partial_{\bar{z}_2} \right).$$

• Notation $f_{\omega^{\dagger_k}}$ for k = 0, 1, 2, 3 means the application of $f_{\omega^{\dagger_k}}$ respectively to a bicomplex function

$$f(\omega) = u(\omega) + v(\omega)\mathbf{i}_1 + r(\omega)\mathbf{i}_2 + s(\omega)\mathbf{j}.$$

The derivatives $f_{\omega^{\dagger}k}$ "exist" for k = 0, 1, 2, 3 if and only if f_{x_l} and f_{y_l} exist for l = 1, 2. These bicomplex operators act on sums, products, etc. just as an ordinary derivative and we have the following result in the bicomplex function theory.

Theorem

Let $f(z_1 + z_2 \mathbf{i}_2) = f_1(z_1, z_2) + f_2(z_1, z_2)\mathbf{i}_2 = u(z_1, z_2) + v(z_1, z_2)\mathbf{i}_1 + r(z_1, z_2)\mathbf{i}_2 + s(z_1, z_2)\mathbf{j}$ be a bicomplex function. If the derivative

$$f'(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{f(\omega) - f(\omega_0)}{\omega - \omega_0}$$
(8)

exists, then $u_x, u_y, r_x, r_y, v_x, v_y, s_x$ and s_y exist, and

1.
$$f_{\omega}(\omega_0) = f'(\omega_0)$$
 (9)

2.
$$f_{\omega^{\dagger_1}}(\omega_0) = 0$$
 (10)

3.
$$f_{\omega^{\dagger_2}}(\omega_0) = 0$$
 (11)

4.
$$f_{\omega^{\dagger_3}}(\omega_0) = 0.$$
 (12)

Moreover, if u_x , u_y , v_x , v_y , r_x , r_y , s_x and s_y exist, and are continuous in a neighborhood of ω_0 , and if (10), (11) and (12) hold, then (9) exists.

イロト イポト イヨト イヨト

nar

Preliminaries

- Bicomplex Numbers
- Bicomplex Differentiability

2 Bicomplex Pseudoanalytic Functions

- Elementary Bicomplex Operators
- Bicomplex Generalization of Function Theory

Our bicomplex generalization of function theory is based on the following three different representations of bicomplex numbers. The *scalar* and *vectorial* part must be adapted to each representations.

Definition [Class R1]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_2$ where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_1)$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_2 to two essentially arbitrary bicomplex functions $F(\omega)$ and $G(\omega)$. We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_2}G(\omega)\} \neq 0. \tag{13}$$

Under this condition, (F, G) will be called a i_1 -generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{i_1})$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

化口压 化间压 化压压 化压压

Our bicomplex generalization of function theory is based on the following three different representations of bicomplex numbers. The *scalar* and *vectorial* part must be adapted to each representations.

Definition [Class R1]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_2$ where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_1)$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_2 to two essentially arbitrary bicomplex functions $F(\omega)$ and $G(\omega)$. We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_2}G(\omega)\} \neq 0. \tag{13}$$

Under this condition, (F, G) will be called a i_1 -generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{i_1})$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

Our bicomplex generalization of function theory is based on the following three different representations of bicomplex numbers. The *scalar* and *vectorial* part must be adapted to each representations.

Definition [Class R1]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_2$ where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_1)$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_2 to two essentially arbitrary bicomplex functions $F(\omega)$ and $G(\omega)$. We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_2}G(\omega)\} \neq 0. \tag{13}$$

Under this condition, (F, G) will be called a i_1 -generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{i_1})$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

・ 回 トーイ ヨート・イ ヨート

Definition

Now, we say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_{i_1}$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(14)

exists.

• In the particular case where $w(\omega)$, $F(\omega)$ and $G(\omega)$ are defined on $D_0 \subset \mathbb{C}(\mathbf{i_2}) \to \mathbb{C}(\mathbf{i_2})$ then we can find unique constants $\lambda_0, \mu_0 \in \mathbb{R}$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$ and we come back to the classical (in $\mathbf{i_2}$) pseudoanalytic developed by L. Bers and I.N. Vekua. In that case, using Bers's theory of Taylor series for pseudoanalytic function, V.V. Kravchenko obtain a locally complete system of solutions of the real stationary two-dimensional Schrödinger equation.

Definition

Now, we say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_{i_1}$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(14)

exists.

• In the particular case where $w(\omega), F(\omega)$ and $G(\omega)$ are defined on $D_0 \subset \mathbb{C}(\mathbf{i_2}) \to \mathbb{C}(\mathbf{i_2})$ then we can find unique constants $\lambda_0, \mu_0 \in \mathbb{R}$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$ and we come back to the classical (in $\mathbf{i_2}$) pseudoanalytic developed by L. Bers and I.N. Vekua. In that case, using Bers's theory of Taylor series for pseudoanalytic function, V.V. Kravchenko obtain a locally complete system of solutions of the real stationary two-dimensional Schrödinger equation.

SOR

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Elementary Bicomplex Operators Bicomplex Generalization of Function Theory

Class R1

- On the other hand, in the case where w(ω), F(ω) and G(ω) are defined on D₀ ⊂ C(j) → C(j) then we can also find unique constants λ₀, μ₀ ∈ ℝ such that w(ω₀) = λ₀F(ω₀) + μ₀G(ω₀) and we are in the hyperbolic pseudoanalytic theory developed by Guo Chun Wen.
- Moreover, if we only restrict the domain D_0 to $\mathbb{C}(\mathbf{i}_2)$, the subclass of bicomplex pseudoanalytic functions obtained is precisely the class developed by V.V. Kravchenko and A. Castañeda to show that in a two-dimensional situation the Dirac equation with a scalar and an electromagnetic potentials decouples into a pair of bicomplex equations. It is also the same class of functions that used V.V. Kravchenko to obtain solutions of the complex stationary two-dimensional Schrödinger equation. However, the case using the complex functions is more complicated and the proof of expansion and convergence theorems for that type of bicomplex Vekua equation is still open.

イロト イポト イヨト イヨト

SOR

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Elementary Bicomplex Operators Bicomplex Generalization of Function Theory

Class R1

- On the other hand, in the case where w(ω), F(ω) and G(ω) are defined on D₀ ⊂ C(j) → C(j) then we can also find unique constants λ₀, μ₀ ∈ ℝ such that w(ω₀) = λ₀F(ω₀) + μ₀G(ω₀) and we are in the hyperbolic pseudoanalytic theory developed by Guo Chun Wen.
- Moreover, if we only restrict the domain D_0 to $\mathbb{C}(\mathbf{i_2})$, the subclass of bicomplex pseudoanalytic functions obtained is precisely the class developed by V.V. Kravchenko and A. Castañeda to show that in a two-dimensional situation the Dirac equation with a scalar and an electromagnetic potentials decouples into a pair of bicomplex equations. It is also the same class of functions that used V.V. Kravchenko to obtain solutions of the complex stationary two-dimensional Schrödinger equation. However, the case using the complex functions is more complicated and the proof of expansion and convergence theorems for that type of bicomplex Vekua equation is still open.

イロト イポト イヨト イヨト

200

Definition

The following expressions are called the i_1 -characteristic coefficients of the pair (*F*, *G*) for k = 1, 2, 3:

$$a_{(F,G)}^{(k)} = -\frac{F^{\dagger_k}G_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G^{\dagger_k}}{FG^{\dagger_2} - F^{\dagger_2}G}, \qquad b_{(F,G)}^{(k)} = \frac{FG_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G}{FG^{\dagger_2} - F^{\dagger_2}G},$$
$$A_{(F,G)} = -\frac{F^{\dagger_2}G_{\omega} - F_{\omega}G^{\dagger_2}}{FG^{\dagger_2} - F^{\dagger_2}G}, \qquad B_{(F,G)} = \frac{FG_{\omega} - F_{\omega}G}{FG^{\dagger_2} - F^{\dagger_2}G}.$$

Theorem

Let (F,G) be a \mathbf{i}_1 -generating pair in some open domain D_0 . Every bicomplex function w defined in D_0 admits the unique representation $w = \phi F + \psi G$ where $\phi, \psi : D_0 \subset \mathbb{T} \to \mathbb{C}(\mathbf{i}_1)$. Moreover, the $(F,G)_{\mathbf{i}_1}$ -derivative $\dot{w} = \frac{d_{(F,G)_{\mathbf{i}_1}}w}{d\omega}$ of $w(\omega)$ exists at ω_0 and has the form

$$\dot{w} = \phi_{\omega}F + \psi_{\omega}G = w_{\omega} - A_{(F,G)}w - B_{(F,G)}w^{\dagger_2}$$
(15)

if and only if

$$w_{\omega^{\dagger_1}} = a_{(F,G)}^{(1)} w + b_{(F,G)}^{(1)} w^{\dagger_2}, \qquad (16)$$

$$w_{\omega^{\dagger_2}} = a_{(F,G)}^{(2)} w + b_{(F,G)}^{(2)} w^{\dagger_2}, \qquad (17)$$

and

$$w_{\omega^{\dagger_3}} = a_{(F,G)}^{(3)} w + b_{(F,G)}^{(3)} w^{\dagger_2}$$
(18)

where w has continuous partial derivatives in a neighborhood of ω_0 .

naa

Definition

The equations (16), (17) and (18) are called the i_1 -bicomplex Vekua equations and the solutions of these equations will be the $(F, G)_{i_1}$ -pseudoanalytic functions.

Remark

For k = 1, 2, 3, the equation

$$w_{\omega^{\dagger k}} = a_{(F,G)}^{(k)} w + b_{(F,G)}^{(k)} w^{\dagger_2}$$
(19)

is equivalent to $\phi_{\omega^{\dagger_k}}F + \psi_{\omega^{\dagger_k}}G = 0$ if and only if

$$[G^{\dagger_k} - G^{\dagger_2}]F_{\omega^{\dagger_k}} = [F^{\dagger_k} - F^{\dagger_2}]G_{\omega^{\dagger_k}}.$$
(20)

・同ト ・ヨト ・ヨト

Definition

The equations (16), (17) and (18) are called the i_1 -bicomplex Vekua equations and the solutions of these equations will be the $(F, G)_{i_1}$ -pseudoanalytic functions.

Remark

For k = 1, 2, 3, the equation

$$w_{\omega^{\dagger_k}} = a_{(F,G)}^{(k)} w + b_{(F,G)}^{(k)} w^{\dagger_2}$$
(19)

is equivalent to $\phi_{\omega^{\dagger_k}} {\cal F} + \psi_{\omega^{\dagger_k}} {\cal G} = {\rm 0}$ if and only if

$$[G^{\dagger_k} - G^{\dagger_2}]F_{\omega^{\dagger_k}} = [F^{\dagger_k} - F^{\dagger_2}]G_{\omega^{\dagger_k}}.$$
(20)

- 4 同 ト - 4 三 ト - 4 三 ト

Definition [Class R2]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_1$ where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_2)$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_1 to two essentially arbitrary bicomplex functions $F(\omega)$ and $G(\omega)$. We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_1}G(\omega)\} \neq 0.$$
 (21)

Under this condition, (F, G) will be called a i_2 -generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{i}_2)$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

Definition [Class R2]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_1$ where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_2)$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_1 to two essentially arbitrary bicomplex functions $F(\omega)$ and $G(\omega)$. We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_1}G(\omega)\} \neq 0.$$
 (21)

Under this condition, (F, G) will be called a i_2 -generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{i}_2)$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

- 4 同 1 - 4 回 1 - 4 回 1

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Elementary Bicomplex Operators Bicomplex Generalization of Function Theory

Definition

Class R2

We say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_{i_2}$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(22)

exists.

 In fact, if we interchange everywhere i₁ with i₂, this case is exactly the same than R1.

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

Elementary Bicomplex Operators Bicomplex Generalization of Function Theory

Definition

Class R2

We say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_{i_2}$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(22)

exists.

 $\bullet\,$ In fact, if we interchange everywhere i_1 with $i_2,$ this case is exactly the same than R1.

In particular, if we defined the function $\pi: \mathbb{T} \longrightarrow \mathbb{T}$ as

$$\pi(\mathbf{a} + \mathbf{b}\mathbf{i}_1 + \mathbf{c}\mathbf{i}_2 + d\mathbf{j}) := \mathbf{a} + \mathbf{c}\mathbf{i}_1 + \mathbf{b}\mathbf{i}_2 + d\mathbf{j}$$
(23)

we obtain that $w(\omega)$ possesses a $(F, G)_{i_1}$ -derivative at $\omega_0 \in D_0$ if and only if the function

$$(\pi \circ w \circ \pi)(\omega) \tag{24}$$

possesses a $(\pi \circ F \circ \pi, \pi \circ G \circ \pi)_{i_2}$ -derivative at $\pi(\omega_0) \in \pi(D_0)$ where

$$(\pi \circ F \circ \pi, \pi \circ G \circ \pi) \tag{25}$$

is a $\mathbf{i_2}$ -generating pair on $\pi(D_0)$.

Definition [Class R3]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_1$ (resp. $z_1 + z_3\mathbf{i}_2$) where $z_1, z_2, z_3 \in \mathbb{C}(\mathbf{j})$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_1 (resp. \mathbf{i}_2) to two essentially arbitrary bicomplex functions F(z) and G(z). We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_3}G(\omega)\} \neq 0.$$
 (26)

Under this condition, (F, G) will be called a **j**-generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{j})$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

Definition [Class R3]

Let $a + b\mathbf{i}_1 + c\mathbf{i}_2 + d\mathbf{j} = z_1 + z_2\mathbf{i}_1$ (resp. $z_1 + z_3\mathbf{i}_2$) where $z_1, z_2, z_3 \in \mathbb{C}(\mathbf{j})$. In this case, the theory will be based on assigning the part played by 1 and \mathbf{i}_1 (resp. \mathbf{i}_2) to two essentially arbitrary bicomplex functions F(z) and G(z). We assume that these functions are defined and twice continuously differentiable in some open domain $D_0 \subset \mathbb{T}$. We require that

$$\operatorname{Vec}\{F(\omega)^{\dagger_3}G(\omega)\} \neq 0.$$
 (26)

Under this condition, (F, G) will be called a **j**-generating pair in D_0 .

• It that case, for every ω_0 in D_0 we can find **unique** constants $\lambda_0, \mu_0 \in \mathbb{C}(\mathbf{j})$ such that $w(\omega_0) = \lambda_0 F(\omega_0) + \mu_0 G(\omega_0)$.

Definition

We say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_j$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(27)

exists.

In this case, the following expressions are called the j-characteristic coefficients of the pair (F, G) for k = 1, 2, 3:

$$a_{(F,G)}^{(k)} = -\frac{F^{\dagger_k}G_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G^{\dagger_k}}{FG^{\dagger_3} - F^{\dagger_3}G}, \qquad b_{(F,G)}^{(k)} = \frac{FG_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G}{FG^{\dagger_3} - F^{\dagger_3}G},$$

$$A_{(F,G)} = -\frac{F^{\dagger_3}G_{\omega} - F_{\omega}G^{\dagger_3}}{FG^{\dagger_3} - F^{\dagger_3}G}, \qquad B_{(F,G)} = \frac{FG_{\omega} - F_{\omega}G}{FG^{\dagger_3} - F^{\dagger_3}G}.$$

Definition

We say that $w(\omega) : D_0 \subset \mathbb{T} \to \mathbb{T}$ possesses at ω_0 the $(F, G)_j$ -derivative $\dot{w}(\omega_0)$ if the (finite) limit

$$\dot{w}(\omega_0) = \lim_{\substack{\omega \to \omega_0 \\ (\omega - \omega_0 \text{ inv.})}} \frac{w(\omega) - \lambda_0 F(\omega) - \mu_0 G(\omega)}{\omega - \omega_0}$$
(27)

exists.

• In this case, the following expressions are called the **j**-characteristic coefficients of the pair (*F*, *G*) for *k* = 1, 2, 3:

$$a_{(F,G)}^{(k)} = -\frac{F^{\dagger_k}G_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G^{\dagger_k}}{FG^{\dagger_3} - F^{\dagger_3}G}, \qquad b_{(F,G)}^{(k)} = \frac{FG_{\omega^{\dagger_k}} - F_{\omega^{\dagger_k}}G}{FG^{\dagger_3} - F^{\dagger_3}G},$$

$$A_{(F,G)} = -\frac{F^{\dagger_3}G_{\omega} - F_{\omega}G^{\dagger_3}}{FG^{\dagger_3} - F^{\dagger_3}G}, \qquad B_{(F,G)} = \frac{FG_{\omega} - F_{\omega}G}{FG^{\dagger_3} - F^{\dagger_3}G}.$$

D. Rochon On a relation of

On a relation of bicomplex pseudoanalytic function theory to the complexified

Theorem

Let (F,G) be a **j**-generating pair in some open domain D_0 . Every bicomplex function w defined in D_0 admits the unique representation $w = \phi F + \psi G$ where $\phi, \psi : D_0 \subset \mathbb{T} \to \mathbb{C}(\mathbf{j})$. Moreover, the $(F,G)_{\mathbf{j}}$ -derivative $\dot{w} = \frac{d_{(F,G)_{\mathbf{j}}}w}{d\omega}$ of $w(\omega)$ exists at ω_0 and has the form

$$\dot{w} = \phi_{\omega}F + \psi_{\omega}G = w_{\omega} - A_{(F,G)}w - B_{(F,G)}w^{\dagger_3}$$
(28)

if and only if

$$w_{\omega^{\dagger_1}} = a_{(F,G)}^{(1)} w + b_{(F,G)}^{(1)} w^{\dagger_3},$$
⁽²⁹⁾

$$w_{\omega^{\dagger_2}} = a_{(F,G)}^{(2)} w + b_{(F,G)}^{(2)} w^{\dagger_3},$$
(30)

and

$$w_{\omega^{\dagger_3}} = a_{(F,G)}^{(3)} w + b_{(F,G)}^{(3)} w^{\dagger_3}$$
(31)

where w has continuous partial derivatives in a neighborhood of ω_0 .

naa

• In this case, it is useful to consider a more specific class of generating pair.

Definition

Let D_1 and D_2 be open in $\mathbb{C}(\mathbf{i}_1)$. Consider that (F_{e_1}, G_{e_1}) and (F_{e_2}, G_{e_2}) are complex (in \mathbf{i}_1), twice continuously differentiable, generating pairs in respectively D_1 and D_2 . Under these conditions, (F, G) will be called a \mathbf{j}^* -generating pair in $D_0 = D_1 \times_e D_2 \in \mathbb{T}$ where

$$F(z_1 + z_2 \mathbf{i}_2) := F_{e_1}(z_1 - z_2 \mathbf{i}_1) \mathbf{e}_1 + F_{e_2}(z_1 + z_2 \mathbf{i}_1) \mathbf{e}_2$$
(32)

and

$$G(z_1+z_2i_2):=G_{e_1}(z_1-z_2i_1)e_1+G_{e_2}(z_1+z_2i_1)e_2.$$

• In this case, it is useful to consider a more specific class of generating pair.

Definition

Let D_1 and D_2 be open in $\mathbb{C}(\mathbf{i}_1)$. Consider that (F_{e_1}, G_{e_1}) and (F_{e_2}, G_{e_2}) are complex (in \mathbf{i}_1), twice continuously differentiable, generating pairs in respectively D_1 and D_2 . Under these conditions, (F, G) will be called a \mathbf{j}^* -generating pair in $D_0 = D_1 \times_e D_2 \in \mathbb{T}$ where

$$F(z_1 + z_2 \mathbf{i}_2) := F_{e_1}(z_1 - z_2 \mathbf{i}_1) \mathbf{e}_1 + F_{e_2}(z_1 + z_2 \mathbf{i}_1) \mathbf{e}_2$$
(32)

and

$$G(z_1 + z_2 \mathbf{i}_2) := G_{e_1}(z_1 - z_2 \mathbf{i}_1) \mathbf{e}_1 + G_{e_2}(z_1 + z_2 \mathbf{i}_1) \mathbf{e}_2.$$
(33)

Lemma

Let $F(\omega)$ and $G(\omega)$ two arbitrary bicomplex functions defined in some domain $D_0 \subset \mathbb{T}$. If

$$\mathsf{Im}\{\overline{F_{e_1}(\omega)}G_{e_1}(\omega)\}\neq 0 \text{ or } \mathsf{Im}\{\overline{F_{e_2}(\omega)}G_{e_2}(\omega)\}\neq 0 \; \forall \omega\in D_0$$

then $\operatorname{Vec}{F(\omega)^{\dagger_3}G(\omega)} \neq 0 \, \forall \omega \in D_0.$

Therefore, from the last lemma, we obtain automatically this following result.

Theorem

Let $D_0 = D_1 \times_e D_2$ where D_1 and D_2 are open domains in $\mathbb{C}(\mathbf{i}_1)$. If (F, G) is a \mathbf{j}^* -generating pair in D_0 then (F, G) is, in particular, a \mathbf{j} -generating pair in D_0 .

Lemma

Let $F(\omega)$ and $G(\omega)$ two arbitrary bicomplex functions defined in some domain $D_0 \subset \mathbb{T}$. If

$$\mathsf{Im}\{\overline{\mathcal{F}_{e_1}(\omega)}\mathcal{G}_{e_1}(\omega)\}
eq 0 ext{ or }\mathsf{Im}\{\overline{\mathcal{F}_{e_2}(\omega)}\mathcal{G}_{e_2}(\omega)\}
eq 0 ext{ }orall \omega\in D_0$$

then Vec{ $F(\omega)^{\dagger_3}G(\omega)$ } $\neq 0 \ \forall \omega \in D_0$.

Therefore, from the last lemma, we obtain automatically this following result.

Theorem

Let $D_0 = D_1 \times_e D_2$ where D_1 and D_2 are open domains in $\mathbb{C}(\mathbf{i}_1)$. If (F, G) is a \mathbf{j}^* -generating pair in D_0 then (F, G) is, in particular, a \mathbf{j} -generating pair in D_0 .

The following result established an explicit connection between the j-bicomplex Vekua equations of two complex variables and the classical Vekua equations.

Theorem

If (F_{e_1}, G_{e_1}) and (F_{e_2}, G_{e_2}) are complex (in $\mathbf{i_1}$) generating pairs in respectively D_1 and D_2 . Then w is a solution on $D_0 = D_1 \times_e D_2$ of the \mathbf{j} -bicomplex Vekua equations with the \mathbf{j}^* -generating pair (F, G) if and only if $w(z_1 + z_2\mathbf{i_2}) = w_{e_1}(z_1 - z_2\mathbf{i_1})\mathbf{e_1} + w_{e_2}(z_1 + z_2\mathbf{i_1})\mathbf{e_2}$ where w_{e_k} is a solution on D_k of the complex (in $\mathbf{i_1}$) Vekua equation with the generating pair (F_{e_k}, G_{e_k}) for k = 1, 2.

イロト イポト イヨト イヨト

SOR

Preliminaries Bicomplex Pseudoanalytic Functions The Complexified Schrödinger Equation

The Complexified Schrödinger Equation

Definition

Consider the equation

$$(\triangle_{\mathbb{C}} - \nu(z_1, z_2))f = 0 \tag{34}$$

in $\Omega \subset \mathbb{R}^4$, where $\triangle_{\mathbb{C}} = \partial_{z_1}^2 + \partial_{z_2}^2$, ν and f are complex (in i_1) valued functions. The equation (34) is simply the complexification of the two-dimensional stationary Schrödinger equation where $\triangle_{\mathbb{C}}$ is the **complex Laplacian**.

- 4 同 1 - 4 回 1 - 4 回 1

First of all, we will write the complex Laplacian in a more explicit way.

Lemma Let $\omega = z_1 + z_2 \mathbf{i}_2$, where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_1)$ then

$$\partial_\omega\partial_{ar\omega}=rac{1}{4}(\partial_{z_1}^2+\partial_{z_2}^2)=rac{1}{4} riangle_\mathbb{C}$$

 $\forall f \in C^2(\Omega)$ where Ω is an open set in \mathbb{R}^4 .

Proposition

Let $\partial_{z_1} = \frac{1}{2} (\partial_x - \mathbf{i}_1 \partial_y)$ and $\partial_{z_2} = \frac{1}{2} (\partial_p - \mathbf{i}_1 \partial_q)$ then

$$16\partial_{\omega}\partial_{\bar{\omega}} = 4\triangle_{\mathbb{C}} = \left(\partial_x^2 - \partial_y^2 + \partial_p^2 - \partial_q^2\right) - 2\mathbf{i}_1\left(\partial_{xy}^2 + \partial_{pq}^2\right)$$

 $\forall f \in C^2(\Omega)$ where Ω is an open set in \mathbb{R}^4 .

・同ト ・ヨト ・ヨト

First of all, we will write the complex Laplacian in a more explicit way.

Lemma Let $\omega = z_1 + z_2 \mathbf{i}_2$, where $z_1, z_2 \in \mathbb{C}(\mathbf{i}_1)$ then

$$\partial_\omega\partial_{ar\omega}=rac{1}{4}(\partial_{z_1}^2+\partial_{z_2}^2)=rac{1}{4} riangle_\mathbb{C}$$

 $\forall f \in C^2(\Omega)$ where Ω is an open set in \mathbb{R}^4 .

Proposition

Let
$$\partial_{z_1} = \frac{1}{2} (\partial_x - \mathbf{i}_1 \partial_y)$$
 and $\partial_{z_2} = \frac{1}{2} (\partial_p - \mathbf{i}_1 \partial_q)$ then

$$\mathbf{16}\partial_{\omega}\partial_{\bar{\omega}} = 4\triangle_{\mathbb{C}} = \left(\partial_x^2 - \partial_y^2 + \partial_p^2 - \partial_q^2\right) - 2\mathbf{i}_1\left(\partial_{xy}^2 + \partial_{pq}^2\right)$$

 $\forall f \in C^2(\Omega)$ where Ω is an open set in \mathbb{R}^4 .

nar

Remark

In the last proposition, if we let y and q be constant variables, then

• $\Omega \subset \mathbb{C}(\mathbf{i}_2)$; • $4\partial_{\omega}\partial_{\bar{\omega}} = \partial_z \partial_{\bar{z}}$ where $\partial_{\bar{z}} = \frac{1}{2}(\partial_x + \mathbf{i}_2\partial_p)$ and $\partial_z = \frac{1}{2}(\partial_x - \mathbf{i}_2\partial_p)$; • $4\triangle_{\mathbb{C}} = 4\partial_z \partial_{\bar{z}} = \partial_x^2 + \partial_p^2 = \triangle$, the Laplacian operator. Similarly, if y and p are constant variables, then • $\Omega \subset \mathbb{D}$; • $4\partial_{\omega}\partial_{\bar{\omega}} = \partial_z \partial_{\bar{z}}$ where $\partial_{\bar{z}} = \frac{1}{2}(\partial_x - \mathbf{j}\partial_q)$ and $\partial_z = \frac{1}{2}(\partial_x + \mathbf{j}\partial_q)$; • $4\triangle_{\mathbb{C}} = 4\partial_z \partial_{\bar{z}} = \partial_z^2 - \partial_z^2 = \Box$, the wave operator.

伺い イラト イラト

Remark

In the last proposition, if we let y and q be constant variables, then

Ω ⊂ C(i₂);
4∂_ω∂_{ω̄} = ∂_z∂_{z̄} where ∂_{z̄} = ¹/₂ (∂_x + i₂∂_p) and ∂_z = ¹/₂ (∂_x - i₂∂_p);
4Δ_C = 4∂_z∂_{z̄} = ∂²_x + ∂²_p = Δ, the Laplacian operator.
Similarly, if y and p are constant variables, then
Ω ⊂ D;
4∂_ω∂_{ω̄} = ∂_z∂_{z̄} where ∂_{z̄} = ¹/₂ (∂_x - j∂_q) and ∂_z = ¹/₂ (∂_x + j∂_q);
4Δ_∞ = 4∂_z∂_{z̄} = ∂²_{z̄} ∂² = □ the wave operator.

・ 同 ト ・ ヨ ト ・ ヨ ト

SOR

Remark

In the last proposition, if we let y and q be constant variables, then

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Factorization of the Complexified Schrödinger Operator

It is well known that if f_0 is a nonvanishing particular solution of the one-dimensional stationary schrödinger equation

$$\left(-\frac{d^2}{dx^2}+\nu(x)\right)$$

then the Scrödinger operator can be factorized as follows:

$$-rac{d^2}{dx^2}+
u(x)=\left(rac{d}{dx}+rac{f_0'}{f_0}
ight)\left(rac{d}{dx}-rac{f_0'}{f_0}
ight).$$

By C we denote the \dagger_2 -bicomplex conjugation operator.

Theorem

Let $f_0 : \Omega \subset \mathbb{R}^4 \longrightarrow \mathbb{C}(\mathbf{i}_1)$ be a nonvanishing particular solution of (34). Then for any $\mathbb{C}(\mathbf{i}_1)$ -valued continuously twice differentiable function φ the following equality hold:

$$(\triangle_{\mathbb{C}} - \nu)\varphi = 4\left(\partial_{\bar{\omega}} + \frac{\partial_{\omega}f_0}{f_0}C\right)\left(\partial_{\omega} - \frac{\partial_{\omega}f_0}{f_0}C\right)\varphi.$$
 (35)

Factorization of the Complexified Schrödinger Operator

It is well known that if f_0 is a nonvanishing particular solution of the one-dimensional stationary schrödinger equation

$$\left(-\frac{d^2}{dx^2}+\nu(x)\right)$$

then the Scrödinger operator can be factorized as follows:

$$-rac{d^2}{dx^2}+
u(x)=\left(rac{d}{dx}+rac{f_0'}{f_0}
ight)\left(rac{d}{dx}-rac{f_0'}{f_0}
ight).$$

By C we denote the \dagger_2 -bicomplex conjugation operator.

Theorem

Let $f_0 : \Omega \subset \mathbb{R}^4 \longrightarrow \mathbb{C}(\mathbf{i_1})$ be a nonvanishing particular solution of (34). Then for any $\mathbb{C}(\mathbf{i_1})$ -valued continuously twice differentiable function φ the following equality hold:

$$(\triangle_{\mathbb{C}} - \nu)\varphi = 4\left(\partial_{\bar{\omega}} + \frac{\partial_{\omega}f_0}{f_0}C\right)\left(\partial_{\omega} - \frac{\partial_{\omega}f_0}{f_0}C\right)\varphi.$$
 (35)

Factorization of the Complexified Schrödinger Operator

Remark

From the last Remark, we see that the complexified Schrödinger equation contains the stationary two-dimensional Schrödinger equation

 $(\bigtriangleup - \nu(x, p))f = 0$

and the Klein-Gordon equation

$$(\Box - \nu(x,q))f = 0.$$

Hence, our factorization of the complexified Schrödinger equation is a generalization of the factorization already obtained for the stationary two-dimensional Schrödinger equation and for the Klein-Gordon equation.

- 4 同 1 - 4 回 1 - 4 回 1

Solutions of the Complexified Schrödinger Equation

Theorem

Let W be a solution of the following bicomplex Vekua equation

$$\left(\partial_{\omega^{\dagger_2}} - \frac{\partial_{\omega^{\dagger_2}} f_0}{f_0} C\right) W = 0 \tag{36}$$

where f_0 is a nonvanishing solution of the complexified Schrödinger equation (34). Then u = Sc(W) is a solution of (34) and v = Vec(W) is a solution of the equation

$$\left(\triangle_{\mathbb{C}} + \nu(z_1, z_2) - 2\left(\frac{|\nabla_{\mathbb{C}} f_0|_{\mathbf{i}_1}}{f_0}\right)^2\right)\mathbf{v} = 0$$
(37)

where $\nabla_{\mathbb{C}} = \partial_{z_1} + \mathbf{i}_2 \partial_{z_2}$.

- 4 回 トーイ 戸 トーイ 戸 ト

Solutions of the Complexified Schrödinger Equation

Remark

If W possesses a $(f_0, \frac{i_2}{f_0})_{i_1}$ -derivative on an open set $\Omega \subset \mathbb{T}$ then W is a solution of the bicomplex Vekua equation:

$$\left(\partial_{\omega^{\dagger_2}}-rac{\partial_{\omega^{\dagger_2}}f_0}{f_0}C
ight)W=0 ext{ on } \Omega.$$

In that case, $a^{(2)}_{(F,G)}=0$ and $b^{(2)}_{(F,G)}=rac{\partial_\omega^{+}_2 f_0}{f_0}$ where

$$F = f_0$$
 and $G = \frac{I_2}{f_0}$

is a i_1 -generating pair for (36). Hence, the bicomplex pseudoanalytic function theory open the way to find explicit solutions of the complexified Schrödinger equation.