



**Bicomplex Numbers** 

 $i_{2}i_{1} \ = \ i_{1}i_{2} = j$ 

and  $a, b, c, d \in \mathbb{R}$ .



Bicomplex Numbers We remark that we can write a bicomplex number  $a + b\mathbf{i_1} + c\mathbf{i_2} + d\mathbf{j}$ as  $(a + b\mathbf{i_1}) + (c + d\mathbf{i_1})\mathbf{i_2} = z_1 + z_2\mathbf{i_2}$ where  $z_1, z_2 \in \mathbb{C}(\mathbf{i_1}) := \{x + y\mathbf{i_1} : \mathbf{i_1}^2 = -1\}.$ 

#### Slide 2

Slide 3

 $\mathbf{2}$ 



## **Bicomplex Numbers**

It is also important to know that every bicomplex number  $z_1 + z_2 \mathbf{i_2}$  has the following unique idempotent representation:

Slide 5

$$z_1 + z_2 \mathbf{i_2} = (z_1 - z_2 \mathbf{i_1}) \mathbf{e_1} + (z_1 + z_2 \mathbf{i_1}) \mathbf{e_2}$$

where  $\mathbf{e_1} = \frac{1+\mathbf{j}}{2}$  and  $\mathbf{e_2} = \frac{1-\mathbf{j}}{2}$ . This representation is very useful because: addition, multiplication and division can be done term-by-term.



**Bicomplex Numbers** 

The set

$$\mathbb{D} := \{x + y\mathbf{j} | x, y \in \mathbb{R}\}$$

Slide 7

will be called the set of hyperbolic numbers (also called duplex numbers) and

$$|w|_{\mathbf{j}} := |z_1 - z_2 \mathbf{i_1}| \mathbf{e_1} + |z_1 + z_2 \mathbf{i_1}| \mathbf{e_2} \in \mathbb{D}$$

will be referred to as the modulus in **j** of  $w = z_1 + z_2 \mathbf{i_2}$ 



### Generalized Mandelbrot Set

Now, let us define a version of the Mandelbrot set for the bicomplex numbers:

Slide 9

**Definition 2** Let  $P_c(w) = w^2 + c$  where  $w, c \in \mathbb{T}$  and  $P_c^{\circ n}(w) := (P_c^{\circ (n-1)} \circ P_c)(w)$ . Then the generalized Mandelbrot set for bicomplex numbers is defined as follows:

$$\mathcal{M}_2 = \{ c \in \mathbb{T} : P_c^{\circ n}(0) \nrightarrow \infty \}.$$



**The Tetrabrot** Because of it's rich fractal structure and his symmetry, we emphasis our work on the generalized Mandelbrot set for bicomplex numbers in dimension three: **Definition 4** The "Tetrabrot" is defined as follows:  $\mathcal{T} = \{a + b\mathbf{i_1} + c\mathbf{i_2} + d\mathbf{j} \in \mathbb{T} : d = 0 \text{ and } P_c^{\circ n}(0) \not\rightarrow \infty\}.$ 



### Distance Estimation for the Tetrabrot

Let us begin with the following well known result about the distance estimation for the filled-Julia sets in the complex plane.

Slide 12

**Theorem 1** Let  $d(z, \mathcal{K}_b) = \inf\{|z - a| : a \in \mathcal{K}_b\}$  be defined as the distance from  $z \in \mathbb{C}$  to the filled-Julia set  $\mathcal{K}_b$  with  $b \in \mathcal{M}$ . Then the distance  $d(z_0, \mathcal{K}_b)$  between  $z_0$  lying outside of  $\mathcal{K}_b$  and  $\mathcal{K}_b$  itself satisfies

$$\frac{\sinh[G(z_0)]}{2e^{G(z_0)}|G'(z_0)|} < d(z_0, \mathcal{K}_b) < \frac{2\sinh[G(z_0)]}{|G'(z_0)|}$$

where  $G(z_0)$  is the potential at the point  $z_0$ .

### Distance Estimation for the Tetrabrot

We will express the distance from a point  $w \in \mathbb{T}$  to a bicomplex filled-Julia set in terms of two distances in the complex plane (in  $\mathbf{i_1}$ ).

Slide 13 Lemma 1 Let  $d(w, \mathcal{K}_{2,c}) = \inf\{|w - a| : a \in \mathcal{K}_{2,c}\}$  be defined as the "bicomplex" distance from  $w = z_1 + z_2 \mathbf{i}_2 \in$  $\mathbb{T}$  to the bicomplex filled-Julia set  $\mathcal{K}_{2,c}$  where  $c = c_1 + c_2 \mathbf{i}_2 \in \mathbb{T}$ . Hence,  $d(w, \mathcal{K}_{2,c}) =$ 

$$\left[\frac{[d(z_1-z_2\mathbf{i_1},\mathcal{K}_{c_1-c_2\mathbf{i_1}})]^2+[d(z_1+z_2\mathbf{i_1},\mathcal{K}_{c_1+c_2\mathbf{i_1}})]^2}{2}\right]^{1/2}.$$

#### Distance Estimation for the Tetrabrot

**Definition 5** Let  $G_1(z_1 - z_2\mathbf{i_1})$  and  $G_2(z_1 + z_2\mathbf{i_1})$  be two electrostatic potentials. The bicomplex potential, at a point  $w = z_1 + z_2\mathbf{i_2} \in (\mathbb{C}(\mathbf{i_1}) \setminus \mathcal{K}_{b_1}) \times_e (\mathbb{C}(\mathbf{i_1}) \setminus \mathcal{K}_{b_2})$ , is defined as

$$G(w) := G_1(z_1 - z_2 \mathbf{i_1})\mathbf{e_1} + G_2(z_1 + z_2 \mathbf{i_1})\mathbf{e_2} \in \mathbb{D}$$

and

$$G'(w) := G'_1(z_1 - z_2 \mathbf{i_1})\mathbf{e_1} + G'_2(z_1 + z_2 \mathbf{i_1})\mathbf{e_2} \in \mathbb{D}.$$

In  $\mathbb{T}$ , the bicomplex logarithm  $\ln(z_1 + z_2 \mathbf{i}_2)$  is defined to be the inverse of the bicomplex exponential function  $e^{z_1+z_2\mathbf{i}_2} := e^{z_1}[\cos(z_2) + \mathbf{i}_2\sin(z_2)]$ . With this definition of the bicomplex logarithm, it is possible to express the bicomplex potential in a similar way to that used for one complex variable. Let  $\mathbb{T} \setminus_e \mathcal{K}_{2,c} := (\mathbb{C}(\mathbf{i}_1) \setminus \mathcal{K}_{c_1-c_2\mathbf{i}_1}) \times_e$  $(\mathbb{C}(\mathbf{i}_1) \setminus \mathcal{K}_{c_1+c_2\mathbf{i}_1})$ .

Slide 15

Slide 14

**Theorem 2** Let  $G : \mathbb{T} \setminus_e \mathcal{K}_{2,c} \longrightarrow \mathbb{D}$  be a bicomplex potential and  $c = (c_1 - c_2 \mathbf{i_1})\mathbf{e_1} + (c_1 + c_2 \mathbf{i_1})\mathbf{e_2}$ . Then,

 $G(w) = \ln |\phi_c(w)|_{\mathbf{j}} \ \forall w \in \mathbb{T}$ 

where  $\phi_c : \mathbb{T} \setminus_e \mathcal{K}_{2,c} \longrightarrow \mathbb{T} \setminus_e \overline{B^1(0,1)} \times_e \overline{B^1(0,1)}$  is biholomorphic in terms of two complex variables.

# Distance Formulas

We are now ready to state the major result of this talk.

**Theorem 3** Let  $w_0 = z_1 + z_2 \mathbf{i_2} \in \mathbb{T}$  and  $c_1 + c_2 \mathbf{i_2} \in \mathcal{M}_2$ . Then, the distance  $d(w_0, \mathcal{K}_{2,c})$  between  $w_0$  lying outside of  $\mathcal{K}_{2,c}$  and  $\mathcal{K}_{2,c}$  itself satisfies:

(1) If 
$$w_0 \in \mathbb{T} \setminus_e \mathcal{K}_{2,c}$$
,  
$$\left| \frac{\sinh[G(w_0)]}{2e^{G(w_0)}G'(w_0)} \right| < d(w_0, \mathcal{K}_{2,c}) < \left| \frac{2\sinh[G(w_0)]}{G'(w_0)} \right|$$
where  $G(w_0)$  is the bicomplex potential at the point  $w_0$ 

$$(2) \text{ If } w_{0} \in (\mathbb{C}(\mathbf{i_{1}}) \setminus \mathcal{K}_{c_{1}-c_{2}\mathbf{i_{1}}}) \times_{e} (\mathcal{K}_{c_{1}+c_{2}\mathbf{i_{1}}}),$$

$$d(w_{0}, \mathcal{K}_{2,c}) > \frac{\sinh[G_{1}(z_{1}-z_{2}\mathbf{i_{1}})]}{2\sqrt{2}e^{G_{1}(z_{1}-z_{2}\mathbf{i_{1}})}|G'_{1}(z_{1}-z_{2}\mathbf{i_{1}})|}$$
and
$$d(w_{0}, \mathcal{K}_{2,c}) < \frac{\sqrt{2}\sinh[G_{1}(z_{1}-z_{2}\mathbf{i_{1}})]}{|G'_{1}(z_{1}-z_{2}\mathbf{i_{1}})|}$$

$$(3) \text{ If } w_{0} \in (\mathcal{K}_{c_{1}-c_{2}\mathbf{i_{1}}}) \times_{e} (\mathbb{C}(\mathbf{i_{1}}) \setminus \mathcal{K}_{c_{1}+c_{2}\mathbf{i_{1}}}).$$

$$-\text{Similar to } (2)-$$

# Approximated Distance Formulas

**Theorem 4** Let  $w_0 = z_1 + z_2 \mathbf{i_2} \in \mathbb{T}$  and  $c_1 + c_2 \mathbf{i_2} \in \mathcal{M}_2$ . Then, the distance  $d(w_0, \mathcal{K}_{2,c})$  between  $w_0$  lying outside of  $\mathcal{K}_{2,c}$  and  $\mathcal{K}_{2,c}$  itself approximatly satisfies:

Slide 18

(1) If 
$$w_0 \in \mathbb{T} \setminus_e \mathcal{K}_{2,c}$$
,

$$\left|\frac{w_n \ln |w_n|_{\mathbf{j}}}{2|w|_{\mathbf{j}}^{\frac{1}{2n}} w_n'}\right| < d(w_0, \mathcal{K}_{2,c}) < \left|2\frac{w_n}{w_n'} \ln |w_n|_{\mathbf{j}}\right|$$

 $\left| \begin{array}{c} 2|w|_{\mathbf{j}}^{\overline{2^n}} w'_n \end{array} \right|$ where  $w_n := P_c^{\circ n}(w_0)$ and  $w'_n := \frac{d}{dw} [P_c^{\circ n}(w)]|_{w=w_0} \forall n \in \mathbb{N}.$ 



(2) If 
$$w_0 \in (\mathbb{C}(\mathbf{i_1}) \setminus \mathcal{K}_{c_1-c_2\mathbf{i_1}}) \times_e (\mathcal{K}_{c_1+c_2\mathbf{i_1}}),$$

$$d(w_{0}, \mathcal{K}_{2,c}) > \frac{|z_{1,n} - z_{2,n}\mathbf{i}_{1}| \ln |z_{1,n} - z_{2,n}\mathbf{i}_{1}|}{2\sqrt{2}|z_{1,n} - z_{2,n}\mathbf{i}_{1}|^{\frac{1}{2^{n}}}|(z_{1,n} - z_{2,n}\mathbf{i}_{1})'|}$$
$$d(w_{0}, \mathcal{K}_{2,c}) < \frac{\sqrt{2}|z_{1,n} - z_{2,n}\mathbf{i}_{1}|}{|(z_{1,n} - z_{2,n}\mathbf{i}_{1})'_{n}|} \ln |z_{1,n} - z_{2,n}\mathbf{i}_{1}|$$
$$\text{where } z_{1,n} - z_{2,n}\mathbf{i}_{1} := P_{c}^{\circ n}(z_{1} - z_{2}\mathbf{i}_{1})$$
$$\text{and } (z_{1,n} - z_{2,n}\mathbf{i}_{1})' := \frac{d}{dz}[P_{c}^{\circ n}(z)]|_{z=z_{1}-z_{2}\mathbf{i}_{1}}.$$

Approximated Distance Formulas

(3) If  $w_0 \in (\mathcal{K}_{c_1-c_2\mathbf{i_1}}) \times_e (\mathbb{C}(\mathbf{i_1}) \setminus \mathcal{K}_{c_1+c_2\mathbf{i_1}}).$ -Similar to (2)-



Slide 21

By definition, no point in  $K_{2,c}$  can be a member of such sequence.







The images of the fractals will be drawn on a screen, noted S that is defined by four coplanar points in space. These points are our screen corner. We divide S into pixel according to the resolution desired for our image. The position of the eye  $\mu$ , will be function of the position and size of S. When we move S,  $\mu$  will follow. We compute the first image of the object and while tracing the fractal, we keep stored the distance of the object.



