Characterization of the Multicomplex Mandelbrot Set

Dominic Rochon¹

Joint work with Guillaume Brouillette Département de mathématiques et d'informatique Université du Québec, Trois-Rivières

> CHAOS 2019, Crete June 2019

¹Research supported by CRSNG (Canada).

Introduction

Preliminaries Multicomplex Dynamics Conclusion

3D Mandelbrot Sets

3D Mandelbrot Sets

- Quaternionic Mandelbrot set: Norton, 1982
- Bicomplex Mandelbrot set (Tetrabrot): Rochon, 2000
- Spherical coordinates (Mandelbulb, Power 8): White & Nylander, 2009

(a) 3D Mandelbrot sets

ヨトイヨト

P

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Bicomplex Numbers

Definition 1 ($\mathbb{M}(2)$ or \mathbb{BC} -space)

Let $z_1 = x_1 + x_2 \mathbf{i}_1$, $z_2 = x_3 + x_4 \mathbf{i}_1$ be two complex numbers $\mathbb{M}(1) \simeq \mathbb{C}$ with $\mathbf{i}_1^2 = -1$. A **bicomplex number** ζ is defined as:

$$\zeta = \mathbf{z}_1 + \mathbf{z}_2 \mathbf{i}_2$$

where $\mathbf{i_2^2} = -1$.

Various representations:

- In terms of four real numbers: $\zeta = x_1 + x_2\mathbf{i}_1 + x_3\mathbf{i}_2 + x_4\mathbf{j}_1$
- In terms of two idempotent elements:

$$\zeta = (z_1 - z_2 \mathbf{i}_1)\gamma_1 + (z_1 + z_2 \mathbf{i}_1)\overline{\gamma}_1$$

where $\gamma_1 = \frac{1+\mathbf{j}_1}{2}$ and $\overline{\gamma}_1 = \frac{1-\mathbf{j}_1}{2}$.

A D b 4 A b

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Operations on Bicomplex Numbers

Let
$$\zeta_1 = z_1 + z_2 \mathbf{i}_2$$
 and $\zeta_2 = z_3 + z_4 \mathbf{i}_2$.

- 1) Equality: $\zeta_1 = \zeta_2 \iff z_1 = z_3$ and $z_2 = z_4$
- 2) Addition: $\zeta_1 + \zeta_2 := (z_1 + z_3) + (z_2 + z_4)\mathbf{i}_2$
- 3) Multiplication: $\zeta_1 \cdot \zeta_2 := (z_1 z_3 z_2 z_4) + (z_2 z_3 + z_1 z_4) \mathbf{i}_2$
- 4) Euclidean Norm: $|\zeta_1| = \sqrt{|z_1|^2 + |z_2|^2} = \sqrt{\sum_{i=1}^4 x_i^2}$ Remark:

• $(\mathbb{M}(2), +, \cdot)$ forms a commutative ring with unity and zero divisors.

• $(\mathbb{M}(2), +, \cdot, |\cdot|)$ forms a **Banach space**.

K A TE K A TE K

I nar

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Tricomplex Numbers

Definition 2 ($\mathbb{M}(3)$ or \mathbb{TC} -space)

Let $\zeta_1 = z_1 + z_2 i_2$, $\zeta_2 = z_3 + z_4 i_2$ be two bicomplex numbers. A **tricomplex number** η is defined as:

$$\eta = \zeta_1 + \zeta_2 \mathbf{i_3}$$

where $i_{3}^{2} = -1$.

Various representations:

- In terms of four complex numbers: $\eta = z_1 + z_2 \mathbf{i}_2 + z_3 \mathbf{i}_3 + z_4 \mathbf{j}_3$
- In terms of eight real numbers:

$$\eta = x_1 + x_2\mathbf{i_1} + x_3\mathbf{i_2} + x_4\mathbf{i_3} + x_5\mathbf{i_4} + x_6\mathbf{j_1} + x_7\mathbf{j_2} + x_8\mathbf{j_3}$$

Go to Table

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Tricomplex Numbers

Various representations (continuing):

• In terms of two idempotent elements:

$$\eta = (\zeta_1 - \zeta_2 \mathbf{i}_2)\gamma_3 + (\zeta_1 + \zeta_2 \mathbf{i}_2)\overline{\gamma}_3$$

where $\zeta_1, \zeta_2 \in \mathbb{M}(2)$, $\gamma_3 = \frac{1+j_3}{2}$ and $\overline{\gamma}_3 = \frac{1-j_3}{2}$.

• In terms of four idempotent elements:

$$\eta = \eta_{\gamma_1\gamma_3} \cdot \gamma_1\gamma_3 + \eta_{\gamma_1\overline{\gamma}_3} \cdot \gamma_1\overline{\gamma}_3 + \eta_{\overline{\gamma}_1\gamma_3} \cdot \overline{\gamma}_1\gamma_3 + \eta_{\overline{\gamma}_1\overline{\gamma}_3} \cdot \overline{\gamma}_1\overline{\gamma}_3$$

where $\eta_{\gamma_1\gamma_3}, \eta_{\gamma_1\overline{\gamma}_3}, \eta_{\overline{\gamma}_1\gamma_3}, \eta_{\overline{\gamma}_1\overline{\gamma}_3} \in \mathbb{M}(1) \simeq \mathbb{C}$ are defined as the **projections** in the plane.

ヨトィヨト

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Subsets of $\mathbb{M}(3)$

Definition 3

Let $i_k\in\{i_1,i_2,i_3,i_4\}$ and $j_k\in\{j_1,j_2,j_3\},$ where $i_k^2=-1$ and $j_k^2=1.$ We define

$$\mathbb{C}(\mathbf{i_k}) := \{x_0 + x_1 \mathbf{i_k} : x_0, x_1 \in \mathbb{R}\}$$

and

$$\mathbb{D}(\mathbf{j}_{\mathbf{k}}) := \{x_0 + x_1 \mathbf{j}_{\mathbf{k}} : x_0, x_1 \in \mathbb{R}\}.$$

- C(i_k) is a subset of M(3) for k ∈ {1,2,3,4}. They are all isomorphic to C. Notice that C(i₁) = M(1).
- D(j_k) is a subset of M(3) and is isomorphic to the set of hyperbolic numbers D for k ∈ {1, 2, 3}.

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Subsets of $\mathbb{M}(3)$ (continuing)

Definition 4

Let $i_k,i_l,i_m\in\{1,i_1,i_2,i_3,i_4,j_1,j_2,j_3\}$ with $i_k\neq i_l,~i_k\neq i_m$ and $i_l\neq i_m.$ The third subset is

$$\mathbb{T}(\mathbf{i}_{\mathbf{m}},\mathbf{i}_{\mathbf{k}},\mathbf{i}_{\mathbf{l}}) := \{x_1\mathbf{i}_{\mathbf{m}} + x_2\mathbf{i}_{\mathbf{k}} + x_3\mathbf{i}_{\mathbf{l}} : x_1, x_2, x_3 \in \mathbb{R}\}.$$

- $\mathbb{T}(\mathbf{i}_{\mathbf{m}}, \mathbf{i}_{\mathbf{k}}, \mathbf{i}_{\mathbf{l}}) = \text{span}_{\mathbb{R}}\{\mathbf{i}_{\mathbf{m}}, \mathbf{i}_{\mathbf{k}}, \mathbf{i}_{\mathbf{l}}\}.$
- This sub-vector space of M(3) is used to make 3D slices in the tricomplex Mandelbrot set.

= nar

ь 4 **Б**ь

Bicomplex Numbers Tricomplex Numbers Multicomplex Numbers

Multicomplex Numbers

More generally, the **multicomplex numbers** of order n (also called *n*-complex numbers) are obtained by using the previous duplication process recursively. They were first described by the Italian mathematician Corrado Segre in 1892. Indeed, for any integer $n \ge 1$, the set of multicomplex numbers of order n is defined as

$$\mathbb{M}(n) := \{\eta_1 + \eta_2 \mathbf{i_n} : \eta_1, \eta_2 \in \mathbb{M}(n-1)\}$$

with $i_n^2=-1$ and $\mathbb{M}(0):=\mathbb{R}.$ Moreover, multicomplex addition and multiplication are defined similarly to the analogous complex operations, meaning that

$$(\eta_1 + \eta_2 \mathbf{i}_{\mathbf{n}}) + (\zeta_1 + \zeta_2 \mathbf{i}_{\mathbf{n}}) = (\eta_1 + \zeta_1) + (\eta_2 + \zeta_2) \mathbf{i}_{\mathbf{n}};$$

$$(\eta_1 + \eta_2 \mathbf{i}_{\mathbf{n}})(\zeta_1 + \zeta_2 \mathbf{i}_{\mathbf{n}}) = (\eta_1 \zeta_1 - \eta_2 \zeta_2) + (\eta_1 \zeta_2 + \eta_2 \zeta_1) \mathbf{i}_{\mathbf{n}}.$$

э.

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

The Mandelbrot Set

Definition 5

Let $Q_c(z) = z^2 + c$ a quadratic complex polynomial. The so-called Mandelbrot set is defined as follows:

 $\mathcal{M}^2 = \{ c \in \mathbb{C} : \{ Q_c^m(0) \}_{m=1}^{\infty} \text{ is bounded } \}.$

The Mandelbrot Set **Tricomplex Mandelbrot Set** Multicomplex Mandelbrot Set Main Result

Tricomplex Mandelbrot Set: The Metatronbrot

Definition 6

Let $Q_c(\eta) = \eta^2 + c$ where $\eta, c \in \mathbb{M}(3)$. The tricomplex Mandelbrot set (also called *Metatronbrot*) is define as the set

 $\mathcal{M}_3^2 := \left\{ c \in \mathbb{M}(3) \, : \, \left\{ \mathit{Q}_c^m(0)
ight\}_{m=1}^\infty \, \, \text{is bounded} \,
ight\}.$

Theorem 7

A tricomplex number c is in \mathcal{M}_3^2 if and only if $|Q_c^m(0)| \le 2$ for all natural number $m \ge 1$.

NOTE: The name Metatronbrot refers to the so-called Metatron's cube of the Flower of Life.

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

Principal 3D slices of \mathcal{M}_3^2

To visualize the 8D tricomplex Mandelbrot set, we have to define a principal 3D slice of $\mathcal{M}_3^2.$

$$\mathcal{T}^2 := \mathcal{T}^2(\mathbf{i}_{\mathsf{m}}, \mathbf{i}_{\mathsf{k}}, \mathbf{i}_{\mathsf{l}}) = \{ c \in \mathbb{T}(\mathbf{i}_{\mathsf{m}}, \mathbf{i}_{\mathsf{k}}, \mathbf{i}_{\mathsf{l}}) \ : \ \{Q_c^m(0)\}_{m=1}^{\infty} \text{ is bounded } \} \,.$$

- There are 56 possible principal 3D slices.
- $\mathcal{T}^2(\mathbf{i}_m, \mathbf{i}_k, \mathbf{i}_l) = \mathcal{M}_3^2 \cap \mathbb{T}(\mathbf{i}_m, \mathbf{i}_k, \mathbf{i}_l).$
- The concept of **idempotent 3D slices** can be also defined using the idempotent basis.

∃ nar

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

Equivalence between principal 3D slices of \mathcal{M}_3^2

Definition 8

Let $\mathcal{T}_1^2(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})$ and $\mathcal{T}_2^2(\mathbf{i_n}, \mathbf{i_q}, \mathbf{i_s})$ be two principal 3D slices of the tricomplex Mandelbrot set \mathcal{M}_3^2 . Then, $\mathcal{T}_1^2 \sim \mathcal{T}_2^2$ if we have a bijective linear mapping $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$ such that $\varphi(\mathbb{T}_1(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})) = \mathbb{T}_2(\mathbf{i_n}, \mathbf{i_q}, \mathbf{i_s})$ and, for all $c \in \mathbb{T}_1(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})$

$$(\varphi \circ Q_c \circ \varphi^{-1})(\eta) = Q_{\varphi(c)}(\eta) \ \forall \eta \in M_2,$$

where M_i is the smallest sub-vector space of $\mathbb{M}(3)$ containing all iterates of $Q_{c_i}^m(0)$ with $c_i \in \mathbb{T}_i$ for i = 1, 2. In that case, we say that \mathcal{T}_1^2 and \mathcal{T}_2^2 have the **same dynamics**.

P

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

Principal Slices of \mathcal{M}_3^2

The number of principal 3D slices of the Metatronbrot \mathcal{M}_3^2 can be reduced to eight slices.

Theorem 9

There are eight **principal 3D slices** of the tricomplex Mandelbrot set \mathcal{M}_3^2 :

- $\mathcal{T}^2(1, i_1, i_2)$ called Tetrabrot;
- $\mathcal{T}^2(i_1,j_1,j_2)$ called Hourglassbrot;
- $\mathcal{T}^2(1, j_1, j_2)$ called Airbrot;
- $\mathcal{T}^2(i_1, i_2, i_3)$ called Metabrot;
- $\mathcal{T}^2(j_1, j_2, j_3)$ called Firebrot;
- $\mathcal{T}^2(i_1,i_2,j_1)$ called Mousebrot;
- $\mathcal{T}^2(i_1,i_2,j_2)$ called Turtlebrot;
- $\mathcal{T}^2(1, i_1, j_1)$ called Arrowheadbrot.

The Mandelbrot Set **Tricomplex Mandelbrot Set** Multicomplex Mandelbrot Set Main Result

Family Shooting of the Metatronbrot: $\eta^2 + c$

- (a) Tetrabrot
- (b) Hourglassbrot

(c) Airbrot

Dominic Rochon Characterization of the Multicomplex Mandelbrot Set

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

Multicomplex Mandelbrot Set

We now consider the multicomplex case. Let $Q_{p,c}(\eta) = \eta^p + c$ and denote

$$Q_{p,c}^{m}(\eta) = \underbrace{(Q_{p,c} \circ Q_{p,c} \circ \cdots \circ Q_{p,c})}_{m \text{ times}}(\eta).$$

Using the function $Q_{p,c}$, we already defined the standard Mandelbrot set as

$$\mathcal{M}^2=ig\{c\in\mathbb{M}(1)\ :\ \{Q^m_{2,c}(0)\}_{m=1}^\infty ext{ is bounded }ig\}.$$

We can easily modify this last definition to obtain the following more general one.

Definition 10

Let $n, p \in \mathbb{N}$ such that $p \ge 2$. The *n*-complex **Multibrot** set of order *p* is defined as

$$\mathcal{M}^p_n = \big\{ c \in \mathbb{M}(n) \ : \ \{Q^m_{p,c}(0)\}_{m=1}^\infty \text{ is bounded } \big\}.$$

Sac

크

▶ < ∃ >

The Mandelbrot Set Tricomplex Mandelbrot Set Multicomplex Mandelbrot Set Main Result

Characterization the 3D Slices

In the same way, we can generalized the previous concept of principal 3D slices into the multicomplexe spaces. In that case we obtain $\binom{2^n}{3}$ possible 3D slices. The next result gives a characterization of those slices.

Theorem 11

Let \mathcal{T}_1^p be a principal 3D slice of \mathcal{M}_n^p . There always exists a tricomplex principal 3D slice \mathcal{T}_2^p such that $\mathcal{T}_1^p \sim \mathcal{T}_2^p$ up to an affine transformation.

In other words, in that context, it is not necessary to explore principal 3D slices beyond the tricomplex space. Hence, the tricomplex space is, in a way, optimal.

P

Conclusion

In future works, it will therefore be possible to look into Multibrot principal slices specifically in the tricomplex case. In the specific case of the Metatronbrot \mathcal{M}_3^2 , we know already that there are only eight principal 3D slices: the Tetrabrot, the Arrowheadbrot, the Hourglassbrot, the Airbrot, the Firebrot, the Mousebrot, the Metabrot and the Turtlebrot. Hence, for p = 2, these are the only principal 3D slices of the Mandelbrot set generalized to the multicomplex spaces.

1

Reference

Thanks for your attention!

(a) Hybridization between the Tetrabrot and a 3D kleinian IFS

Dominic Rochon

Characterization of the Multicomplex Mandelbrot Set

= nar

프 > < 프 > -

References: www.3dfractals.com

- Baley Price, G., *An Introduction to Multicomplex Spaces and Functions*, Monographs and textbooks on pure and applied mathematics (1991).
- Brouillette, G., and Rochon, D., *Characterization of the Principal 3D Slices Related to the Multicomplex Mandelbrot Set*, AACA, (to appear).
- Garant-Pelletier, V. and Rochon, D., *On a Generalized Fatou-Julia Theorem in Multicomplex spaces*, Fractals **17**(3), 241-255 (2009).
- Parisé, P.-O. and Rochon, D., *Tricomplex Dynamical Systems Generated by Polynomials of Odd Degree*, Fractals **25**(3), 1-11 (2017).
- Rochon, D., A Generalized Mandelbrot Set for Bicomplex Numbers, Fractals. 8(4), 355-368 (2000).
- Wang, X.-y. and Song W.-J., *The Genralized M-J Sets for Bicomplex Numbers*, Non linear Dynam. **72**, 17-26 (2013).

不同 トイ ヨトイヨト

∃ nar

References

Table of imaginary units

•	1	i_1	i ₂	i ₃	i4	\mathbf{j}_1	j 2	j 3
1	1	i_1	i ₂	i ₃	i4	j 1	j ₂	j ₃
i_1	i_1	-1	j 1	j 2	— j 3	$-i_2$	$-i_3$	i4
i 2	i ₂	j 1	-1	j 3	— j 2	$-i_1$	i4	$-i_3$
i3	i3	j 2	j 3	- 1	$-\mathbf{j}_1$	i4	$-i_1$	$-i_2$
i4	i4	— j 3	$-\mathbf{j}_2$	$-\mathbf{j}_1$	-1	i ₃	i2	i_1
j 1	j 1	$-i_2$	$-i_1$	i 4	i ₃	1	− j ₃	$-\mathbf{j}_2$
j ₂	j2	$-i_3$	i4	$-i_1$	i 2	— j 3	1	$-\mathbf{j}_1$
j ₃	j3	i4	$-i_3$	$-i_2$	i_1	— j 2	$-\mathbf{j}_1$	1

Table: Product of tricomplex imaginary units

E 990

∃ → < ∃ →