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Bicomplex Numbers

In 1892, in search for and development of special algebras,
Corrado Segre (1860-1924) published a paper in which he
treated an in�nite set of algebras whose elements he called
bicomplex numbers, tricomplex numbers,..., n-complex
numbers.

We de�ne bicomplex numbers as follows :
¨
§

¥
¦C2 := {a + bi1 + ci2 + dj : i1

2 = i2
2 = −1, j2 = 1}

where i2j = ji2 = −i1, i1j = ji1 = −i2, i2i1 = i1i2 = j

and a, b, c, d ∈ R.
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We remark that we can write a bicomplex number
a + bi1 + ci2 + dj as :

¨
§

¥
¦(a + bi1) + (c + di1)i2 = z1 + z2i2

where z1, z2 ∈ C1 := {x + yi1 : i1
2 = −1}. Thus, C2

can be viewed as the complexi�cation of C1 and a bicom-
plex number can be seen as an element of C2. Moreover,
C2 is a commutative unitary ring with the following
characterization for the non-invertible elements.

Let w = z1 + z2i2 ∈ C2. Then w is noninvertible if and
only if :

z1
2 + z2

2 = 0.
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Bicomplex Analysis

It is also possible to de�ne di�erentiability of a function
at a point of C2 :
De�nition 1 Let U be an open set of C2 and w0 ∈ U .
Then, f : U ⊆ C2 −→ C2 is said to be C2-di�erentiable
at w0 with derivative equal to f ′(w0) ∈ C2 if

lim
w→w0

(w−w0 inv.)

f(w)− f(w0)
w − w0

= f ′(w0).

We will also say that the function f is C2-holomorphic
on an open set U i� f is C2-di�erentiable at each point
of U.

Slide 5

'

&

$

%

As we saw, a bicomplex number can be seen as an ele-
ment of C2, so a function f(z1 + z2i2) = f1(z1, z2) +
f2(z1, z2)i2 of C2 can be seen as a mapping f(z1, z2) =
(f1(z1, z2), f2(z1, z2)) of C2. Here we have a characteriza-
tion of such mappings :

Theorem 1 Let U be an open set and f : U ⊆ C2 −→
C2. Let also f(z1 + z2i2) = f1(z1, z2)+ f2(z1, z2)i2. Then
f is C2-holomorphic on U i� :

f1 and f2 are holomorphic in z1 and z2

and,
∂f1

∂z1
=

∂f2

∂z2
and ∂f2

∂z1
= −∂f1

∂z2
on U.
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Now, it is natural to de�ne for C2 the following class of
mappings :

De�nition 2 The class of T-holomorphic mappings on
a open set U ⊆ C2 is de�ned as follows :

TH(U) :={f :U ⊆ C2 −→ C2|f ∈ H(U) and

∂f1
∂z1

= ∂f2
∂z2

, ∂f2
∂z1

= −∂f1
∂z2

on U}.

It is the subclass of holomorphic mappings of C2 satis-
fying the complexi�ed Cauchy-Riemann equations.

Slide 7

'

&

$

%

The idempotent basis

We remark that f ∈ TH(U) i� f is C2-holomorphic on
U. It is also important to know that every bicomplex
number z1 + z2i2 has the following unique idempotent
representation :

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2

where e1 = 1+j
2 and e2 = 1−j

2 .
This representation is very useful because : addition, mul-
tiplication and division can be done term-by-term. Also,
an element will be noninvertible i� z1 − z2i1 = 0 or
z1 + z2i1 = 0.
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The notion of holomorphicity can also be seen with
this kind of notation. For this we need the following de-
�nition :

De�nition 3 We say that X ⊆ C2 is a C2-cartesian set
determined by X1 and X2 if

X = X1 ×e X2 := {z1 + z2i2 ∈ C2 : z1 + z2i2 =

w1e1 + w2e2, (w1, w2) ∈ X1 ×X2}.

Remark :
If X1 and X2 are domains of C1 then X1 ×e X2 is also a
domain of C2.
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Now, it is possible to state the following striking theo-
rems :

Theorem 2 If fe1 : X1 −→ C1 and fe2 : X1 −→ C1

are holomorphic functions of C1 on the domains X1 and
X2 respectively, then the function f : X1 ×e X2 −→ C2

de�ned as

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2,

∀ z1 + z2i2 ∈ X1 ×e X2 is �T-holomorphic� on the
domain X1 ×e X2.
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Bloch Constant

Let H(B) be the class of functions w = f(z) holomorphic
in the unit disc B = {z ∈ C : |z| < 1}. In 1925, A. Bloch
proved the famous theorem which bears his name :

Theorem 3 (Bloch) There exists a positive constant b

such that if f ∈ H(B) and f ′(0) 6= 0, then f maps some
subdomain of B biholomorphically onto a disc of radius
b · |f ′(0)|.
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Such a disc is called a univalent disc for f . The Bloch
constant may be described as :

¨
§

¥
¦β = inf{βf : f ∈ H(B) with f ′(0) = 1}

where

βf = sup{b : f(B) contains a univalent disc of radius b}.
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The following upper and lower estimates for β were found
by L. Ahlfors and H. Grunsky :

0.43 · ·· =
√

3
4
≤ β ≤ Γ(1/3)Γ(11/12)

Γ(1/4)(1 +
√

3)1/2
= 0.47 · · · .

It is conjectured that the correct value of β is precisely
this upper bound.
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Passing to several complex variables, a holomorphic map-
ping f from a domain in Cn into Cn is said to be nonde-
generate if detJf is not identically zero on the domain.
Let Bn denote the open unit ball in Cn. A nondegenerate
mapping f from Bn into Cn is said to be normalized if
detJf (0) = 1, where 0 denotes the origin in Cn. For such
f we denote by βf the supremum of values b such that
the image f(Bn) contains a univalent ball of radius b.
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If we �x K > 0 and consider the holomorphic mapping
f : C2 −→ C2 de�ned by

f(z1, z2) = (z1/
√

K,
√

Kz2),

then, f is normalized but βf = 1/
√

K. Since K can be
chosen arbitrarily large, we see that there is no Bloch
theorem for general holomorphic mappings, when n > 1.
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One might argue that the correct generalization of the
normalization “f ′(0) = 1” to several variables is not
“detJf (0) = 1”. However, there are also examples of ho-
lomorphic mappings f , with the stronger normalization
Jf (0) = I (I is the identity mapping) and for which βf

is arbitrarily small.
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Thus, we see that for n > 1 we need to restrict the class
of mappings to a more speci�c subclass to obtain a Bloch
theorem. One of the well known subclasses is the class of
K-quasiregular mappings. For such a class of mappings,
it is possible to �nd a Bloch theorem in Cn. The next
theorem a�rms that there exists also a Bloch constant
for the class of T-holomorphic mappings on the unit ball
of C2.
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Bloch Theorem in C2

Theorem 4 There is a positive constant d such that if
f ∈ TH(B2) with Jf (0) = I, then f maps some subdo-
main of B2 biholomorphically onto a ball of radius d.

We use the following notations :

Notation 1

δ := inf{δf : f ∈ TH(B2(0, 1)) with Jf (0) = I},

where δf := sup{d : f(B2(0, 1)) contains a univalent
ball of radius d}.
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We �nd the following estimates for our Bloch constant δ

on the unit ball :

Theorem 5
β√
2
≤ δ ≤

√
2β,

where β is the Bloch constant of one variable.

Remark :
If we replace the balls of C2 by the bicomplex �discs"
D(0, r) := B1(0, r)×e B1(0, r) where Bn(0, r) is the open
ball of Cn

1 w Cn, the Bloch constant has the same value
as the classical Bloch constant for one variable.
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Hyperholomorphy vs Quasiregularity

Now, to justify our Bloch theorem on the unit ball, we
need to prove that the new class of mappings is not totally
included in the class of K-quasiregular mappings.
It is easy to show the following characterization :

Theorem 6 If f ∈ TH(B2) then f is K-quasiregular i�

∣∣∣∣
∂f1

∂z1

∣∣∣∣
2

+
∣∣∣∣
∂f2

∂z1

∣∣∣∣
2

≤ K2

∣∣∣∣∣
(

∂f1

∂z1

)2

+
(

∂f2

∂z1

)2
∣∣∣∣∣ on B2.
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The following examples will clearly show that a T-holomo-
rphic mapping is not necessarily quasiregular.

Example 1 If f(w) = ew then f is K-quasiregular on
B2 i� K ≥

√
cosh(2). Moreover, because (ew)′|w=0 =

e0 = 1, we have Jew(0) = I.
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Example 2 If f(w) = w + w2

2 , then f is an entire T-
holomorphic (normalized) mapping, but for all K is not
K-quasiregular.

Proof. The function f is normalized because f ′(w) = 1+w

and then f ′(0) = 1. Also, w0 = −1/2 + 1/2j is in B2

with f ′(w0) = 1/2 + 1/2j which is noninvertible. Hence,
f cannot satisfy the criteria of Theorem 6 at w0 and then
for all K, f cannot be K-quasiregular.2
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Picard Theorem in C2

The Picard theorem follows from Bloch's theorem in one
variable. It is then interesting to ask whether the same
is possible in the case of T-holomorphic mappings in C2.
However, here we can directly �nd a Picard theorem wi-
thout invoking our Bloch theorem :

Theorem 7 (Picard) Let f ∈ TH(C2). If there are two
bicomplex numbers α, β such that α− β is invertible and
for which the set {w ∈ C2 : w − α is noninvertible}

∪{w ∈ C2 : w − β is noninvertible}
is not in the range of f , then f is constant.
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In the same way, it is possible to �nd also a Casorati-
Weierstrass theorem :

Theorem 8 (Casorati-Weierstrass) Let f ∈ TH(C2)
with f ′(w) not identically noninvertible. Then, f(C2) is
dense in C2.

A famous example of Fatou and Bieberbach shows that
the usual formulation of the Picard theorem in C does
not extend to holomorphic mappings in C2.
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In this connection, we have some interesting consequences
of Theorem 8 which can be interpreted as an other kind
of little Picard theorem for bicomplex numbers :

Corollary 1 There is no nondegenerate T-holomorphic
mapping

f : C2 −→ C2

such that C2\f(C2) contains a ball.

Corollary 2 Fatou-Bieberbach examples cannot be T-ho-
lomorphic mappings, i.e. they cannot satisfy the com-
plexi�ed Cauchy-Riemann equations.


