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Abstract. Using the bicomplex numbers T ∼= ClC(1, 0) ∼= ClC(0, 1) which is
a commutative ring with zero divisors defined by T = {w0 + w1i1 + w2i2 +
w3j | w0, w1, w2, w3 ∈ R} where i21 = −1, i22 = −1, j2 = 1 and i1i2 = j =
i2i1, we construct hyperbolic and bicomplex Hilbert spaces. Linear function-
als and dual spaces are considered on these spaces and properties of linear
operators are obtained; in particular it is established that the eigenvalues of
a bicomplex self-adjoint operator are in the set of hyperbolic numbers.
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1. Introduction

Many papers have been written on the extension of the formalism of quantum
mechanics. These generalizations have been done mainly over quaternions or over
the Cayley algebra (octonions), see for instance [1, 2, 3, 4]. The reason why people
have worked mainly on this algebraic structures to generalize quantum mechanics
comes from the fact that there exist only four normed division algebras [5]: reals
(R), complex numbers (C), quaternions (H) and the Cayley algebra (O). The
Cayley algebra has an important blank since associativity is crucial. Indeed, in [1]
it is shown that quantum mechanics cannot be formulated over the Cayley algebra
since, in at least two instances, associativity is needed for the existence of Hilbert
space. Quantum mechanics over quaternions seems to work better [1, 2, 3, 6].
However, recently some interest has been deployed to study quantum mechanics
for associative and commutative algebras beyond the paradigm of algebras without
zero divisors [7, 8, 9]. This leads to a wide spectrum of possibilities, among which
we have the hyperbolic numbers D ∼= ClR(0, 1) (also called duplex numbers) [10],
the bicomplex numbers T ∼= ClC(1, 0) ∼= ClC(0, 1) [11] and, more generally, the
multicomplex numbers [12, 13].
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In recent years, the theory of bicomplex numbers and bicomplex functions has
found many applications, see for instance [14, 15, 16, 17, 18]. Bicomplex numbers
are a commutative ring with unity which contains the field of complex numbers
and the commutative ring of hyperbolic numbers. Bicomplex (hyperbolic) numbers
are unique among the complex (real) Clifford algebras in that they are commuta-
tive but not division algebras. In fact, bicomplex numbers generalize (complexify)
hyperbolic numbers. Note that Hilbert spaces over hyperbolic numbers that have
been studied in [8, 9] and [19] are different from the hyperbolic Hilbert space that
we consider in this paper.

In Section 2 we give an overview of the fundamental theory of bicomplex
analysis necessary for this article. Section 3 is devoted to free modules over the
ring of bicomplex numbers (which is not a C∗-algebra). A fundamental result useful
for the rest of the paper is presented: the unique decomposition of any elements
of our free module M into two elements of a standard (complex) vector space in
terms of the idempotent basis. The Section 4 (and 5) introduces the bicomplex
scalar product (the hyperbolic scalar product). In particular, it is shown that
one can construct a metric space from M and our bicomplex scalar product. In
Section 6, we define the bicomplex Hilbert space; two examples are given. Section 7
introduces the dual space M∗ and re-examines the previous Sections in terms of
the Dirac notation. Finally, Section 8 concerns linear operators or more specifically
adjoint and self-adjoint operators as well as the bicomplex eigenvectors equation.

2. Preliminaries

Bicomplex numbers are defined as [11, 12, 20]

T := {z1 + z2i2 | z1, z2 ∈ C(i1)}, (2.1)

where the imaginary units i1, i2 and j are governed by the rules: i21 = i22 = −1,
j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1,

(2.2)

where we define C(ik) := {x + yik | i2k = −1 and x, y ∈ R} for k = 1, 2. Hence it
is easy to see that the multiplication of two bicomplex numbers is commutative.

It is also convenient to write the set of bicomplex numbers as

T := {w0 + w1i1 + w2i2 + w3j | w0, w1, w2, w3 ∈ R}. (2.3)

In particular, in equation (2.1), if we put z1 = x and z2 = yi1 with x, y ∈ R,
then we obtain the subalgebra of hyperbolic numbers: D = {x+ yj | j2 = 1, x, y ∈
R}.

Complex conjugation plays an important role both for algebraic and geo-
metric properties of C, as well as in standard quantum mechanics. For bicomplex
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numbers, there are three possible conjugations. Let w ∈ T and z1, z2 ∈ C(i1) such
that w = z1 + z2i2. Then we define the three conjugations as:

w†1 = (z1 + z2i2)†1 := z1 + z2i2, (2.4a)

w†2 = (z1 + z2i2)†2 := z1 − z2i2, (2.4b)

w†3 = (z1 + z2i2)†3 := z1 − z2i2, (2.4c)

where zk is the standard complex conjugate of complex numbers zk ∈ C(i1). If
we say that the bicomplex number w = z1 + z2i2 = w0 + w1i1 + w2i2 + w3j
has the “signature” (+ + ++), then the conjugations of type 1,2 or 3 of w have,
respectively, the signatures (+ − +−), (+ + −−) and (+ − −+). We can verify
easily that the composition of the conjugates gives the four-dimensional abelian
Klein group:

◦ †0 †1 †2 †3
†0 †0 †1 †2 †3
†1 †1 †0 †3 †2
†2 †2 †3 †0 †1
†3 †3 †2 †1 †0

(2.5)

where w†0 := w ∀w ∈ T.
All of the three kinds of conjugation have some of the standard properties of

conjugations, such as:

(s+ t)†k = s†k + t†k , (2.6)
(
s†k

)†k = s, (2.7)

(s · t)†k = s†k · t†k , (2.8)

for s, t ∈ T and k = 0, 1, 2, 3.

We know that the product of a standard complex number with its conjugate
gives the square of the Euclidean metric in R2. The analogs of this, for bicomplex
numbers, are the following. Let z1, z2 ∈ C(i2) and w = z1 +z2i2 ∈ T, then we have
that [11]:

|w|2i1 := w · w†2 = z2
1 + z2

2 ∈ C(i1), (2.9a)

|w|2i2 := w · w†1 =
(|z1|2 − |z2|2

)
+ 2Re(z1z2)i2 ∈ C(i2), (2.9b)

|w|2j := w · w†3 =
(|z1|2 + |z2|2

) − 2Im(z1z2)j ∈ D, (2.9c)

where the subscript of the square modulus refers to the subalgebra C(i1),C(i2) or
D of T in which w is projected.

Note that for z1, z2 ∈ C(i1) and w = z1 + z2i2 ∈ T, we can define the usual
(Euclidean in R4) norm of w as |w| =

√|z1|2 + |z2|2 =
√

Re(|w|2j ).
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It is easy to verify that w · w
†2

|w|2i1
= 1. Hence, the inverse of w is given by

w−1 =
w†2

|w|2i1
. (2.10)

From this, we find that the set NC of zero divisors of T, called the null-cone, is
given by {z1 + z2i2 | z2

1 + z2
2 = 0}, which can be rewritten as

NC = {z(i1 ± i2)| z ∈ C(i1)}. (2.11)

Let us also now recall the following three real moduli (see [11] and [20]):
1) For s, t ∈ T, we define the first modulus as | · |1 :=

∣∣| · |i1
∣∣. This modulus has

the following properties:
a) | · |1 : T → R,
b) |s|1 ≥ 0 with |s|1 = 0 iff s ∈ NC,
c) |s · t|1 = |s|1 · |t|1.

From this definition, we can rewrite this real pseudo-modulus in a much
practical way as

|w|1 = |z2
1 + z2

2 |1/2

or
|w|1 = 4

√
ww†1w†2w†3 .

2) For s, t ∈ T, we can define formally the second real modulus as | · |2 :=
∣
∣| · |i2

∣
∣.

But an easy computation leads to

|w|2 = |w|1 = |z2
1 + z2

2 |1/2, (2.12)

meaning that there are no reasons to introduce | · |2
3) One more option is to define the third modulus as | · |3 :=

∣∣| · |j
∣∣. It has the

following properties:
a) | · |3 : T → R,
b) |s|3 ≥ 0 with |s|3 = 0 iff s = 0,
c) |s+ t|3 ≤ |s|3 + |t|3,
d) |s · t|3 ≤ √

2|s|3 · |t|3.
e) |λ · t|3 = |λ| · |t|3, for λ ∈ C(i1) or C(i2).

Hence | · |3 determines a structure of a real normed algebra on T. What is
more, one gets directly that

|w|3 =
√
|z1|2 + |z2|2, (2.13)

for w = z1 + z2i2 with z1, z2 ∈ C(i1), i.e., in fact this is just the Euclidean
metric in R4 written in a form compatible with the multiplicative structure
of bicomplex numbers.
Note also that

(i) |w|j = |z1 − z2i1|e1 + |z1 + z2i1|e2 ∈ D, ∀w = z1 + z2i2 ∈ T,
(ii) |s · t|j = |s|j|t|j ∀s, t ∈ T.
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Finally, let us mention that any bicomplex numbers can be written using an
orthogonal idempotent basis defined by

e1 =
1 + j

2
and e2 =

1 − j
2

,

where e2
1 = e1, e2

2 = e2, e1 + e2 = 1 and e1e2 = 0 = e2e1. Indeed, it is easy to
show that for any z1 + z2i2 ∈ T, z1, z2 ∈ C(i1), we have

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2. (2.14)

3. T-Module

The set of bicomplex numbers is a commutative ring. So, to define a kind of vector
space over T, we have to deal with the algebraic concept of modules. We denote
by M a free T-module with the finite T-basis

{
m̂l | l ∈ {1, . . . , n}

}
. Hence,

M =

{
n∑

l=1

xlm̂l | xl ∈ T

}

.

Let us now define

V :=

{
n∑

l=1

xlm̂l | xl ∈ C(i1)

}

⊂M. (3.1)

The set V is a free C(i1)-module which depends on a given T-basis of M . In fact,
V is a complex vector space of dimension n with the basis

{
m̂l | l ∈ {1, . . . , n}

}
.

For a complete treatment of Module Theory, see [21].

Theorem 1. Let X̂ =
n∑

l=1

xlm̂l, xl ∈ T, for all l ∈ {1, . . . , n}. Then, there exist

X̂e1 , X̂e2 ∈ V such that
X̂ = e1X̂e1 + e2X̂e2 .

Proof. From equation (2.14), it is always possible to decompose a bicomplex num-
ber in term of the idempotent basis. So let us write xl = x1le1 + x2le2 where
x1l, x2l ∈ C(i1), for all l ∈ {1, . . . , n}. Hence,

X̂ =
n∑

l=1

xlm̂l =
n∑

l=1

(x1le1 + x2le2)m̂l = e1

n∑

l=1

(x1lm̂l) + e2

n∑

l=1

(x2lm̂l)

= e1X̂e1 + e2X̂e2

where X̂ek
:=

n∑

l=1

(xklm̂l) for k = 1, 2. �
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Corollary 1. The elements X̂e1 and X̂e2 are uniquely determined. In other words,
e1X̂e1 + e2X̂e2 = e1Ŷe1 + e2Ŷe2 if and only if X̂e1 = Ŷe1 and X̂e2 = Ŷe2 .

Proof. If e1X̂e1 +e2X̂e2 = e1Ŷe1 +e2Ŷe2 , then we have e1(X̂e1 − Ŷe1)+e2(X̂e2 −
Ŷe2) = 0̂. Suppose now that

{
m̂l | l ∈ {1, . . . , n}

}
is a free basis of M , then we

have X̂ek
=

n∑

l=1

xklm̂l and Ŷek
=

n∑

l=1

yklm̂l (k = 1, 2), xkl, ykl ∈ C(i1). Therefore,

we find
0̂ = e1(X̂e1 − Ŷe1) + e2(X̂e2 − Ŷe2)

= e1

(
n∑

l=1

x1lm̂l −
n∑

l=1

y1lm̂l

)

+ e2

(
n∑

l=1

x2lm̂l −
n∑

l=1

y2lm̂l

)

=
n∑

l=1

(xl − yl)m̂l,

where xl := e1x1l + e2x2l ∈ T and yl := e1y1l + e2y2l ∈ T. This implies that
xl = yl for all l ∈ {1, . . . , n}; in other words x1l = y2l and x2l = y2l, i.e. X̂ek

= Ŷek

for k = 1, 2.
Conversely, if X̂e1 = Ŷe1 and X̂e2 = Ŷe2 we find trivially the desired result.

�
Whenever X̂ ∈M , we define the projection Pk : M −→ V as

Pk(X̂) := X̂ek
(3.2)

for k = 1, 2. This definition is a generalization of the mutually complementary
projections {P1, P2} defined in [11] on T, where T is considered as the canonical
T-module over the ring of bicomplex numbers. Moreover, from Corollary 1, X̂e1

and X̂e2 are uniquely determined from a given T-basis and the projections P1 and
P2 satisfies the following property:

Pk(w1X̂ + w2Ŷ ) = Pk(w1)Pk(X̂) + Pk(w2)Pk(Ŷ ) (3.3)

∀w1, w2 ∈ T, ∀X̂, Ŷ ∈M and k = 1, 2.
The vector space V is defined from the free T-module M with a given T-basis.

The next theorem tell us thatM is isomorphic to V 2 = {(X̂; Ŷ ) | X̂, Ŷ ∈ V }, where
the addition +V 2 and the multiplication ·V 2 by a scalar are defined by

+V 2 : V 2 × V 2 → V 2
(
(X̂1; Ŷ1), (X̂2; Ŷ2)

)

→ (X̂1; Ŷ1) +V2 (X̂2; Ŷ2)

:= (X̂1 + X̂2; Ŷ1 + Ŷ2)

·V 2 : T × V 2 → V 2

(λ, (X̂ ; Ŷ )) 
→ λ ·V 2 (X̂ ; Ŷ )
:= (λ1X̂ ;λ2Ŷ ),
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where λ = λ1e1 + λ2e2. Here the symbol + denotes the addition on V and λ1X̂

or λ2Ŷ denotes the multiplication by a scalar on V (which are also the addition
and the multiplication defined on M). Note that we use the notation (X̂ ; Ŷ ) to
denote an element of V 2, instead of the usual notation (X̂, Ŷ ), to avoid confusion
with the bicomplex scalar product defined below.

Theorem 2. The set V 2 defined with the addition +V2 and the multiplication by a
scalar ·V 2 over the bicomplex numbers T is isomorphic to M , i.e.

(V 2,+V2 , ·V 2) � (M,+, ·).
Proof. First, it is easy to show that V 2 is a T-module with +V 2 and ·V 2 defined
above. Now let us consider the function Φ : V 2 → M defined by Φ

(
(X̂ ; Ŷ )

)
=

e1X̂+e2Ŷ . It is not difficult to show that Φ
(
(X̂1; Ŷ1)+V 2(X̂2; Ŷ2)

)
= Φ

(
(X̂1; Ŷ1)

)
+

Φ
(
(X̂2; Ŷ2)

)
and that Φ(λ ·V 2 X̂) = λΦ(X̂), i.e. that Φ is an homomorphism. The

function Φ is a one-to-one function. Indeed if Φ(
(
X̂1; Ŷ1)

)
= Φ

(
(X̂2; Ŷ2)

)
, then

e1X̂1 + e2Ŷ1 = e1X̂2 + e2Ŷ2 which implies that X̂1 = X̂2 and Ŷ1 = Ŷ2 from
Corollary 1. Finally, Φ is an onto function since for all X̂ = e1X̂e1 + e2X̂e2 ∈M ,
we have Φ

(
(X̂e1 ; X̂e2)

)
= X̂. �

Theorem 3. Let
{
v̂l | l ∈ {1, . . . , n}

}
be a basis of the vector space V over C(i1).

Then
{

(v̂l; v̂l) | l ∈ {1, . . . , n}
}

is a basis of the free T-module (V 2,+V 2 , ·V 2) and
{
v̂l | l ∈ {1, . . . , n}

}
is a T-basis of M .

Proof. Let us consider an arbitrary (X̂; Ŷ ) ∈ V 2, then

(X̂ ; Ŷ ) =

(
n∑

l=1

c1lv̂l;
n∑

l=1

c2lv̂l

)

=
n∑

l=1

(c1lv̂l; c2lv̂l),

with ckl ∈ C(i1) (k = 1, 2). Here the summations in the second expression are the
addition on V and the summation in the third expression is the addition over V 2,
i.e. the addition +V 2 . Therefore, we have

(X̂; Ŷ ) =
n∑

l=1

cl ·V 2 (v̂l; v̂l),

where cl = e1c1l + e2c2l ∈ T. Moreover, if (X̂; Ŷ ) = (0̂; 0̂), then c1l = c2l = 0
for all l ∈ {1, . . . , n} since

{
v̂l | l ∈ {1, . . . , n}

}
is a basis of V and cl = 0 for

all l ∈ {1, . . . , n}. Therefore
{

(v̂l; v̂l) | l ∈ {1, . . . , n}
}

is a T-basis of V 2 and the

T-module (V 2,+V 2 , ·V 2) is free. It is now easy to see that
{
v̂l | l ∈ {1, . . . , n}

}

is a T-basis of M since the isomorphism Φ given in the proof of Theorem 2 gives
Φ

(
(v̂l; v̂l)

)
= e1v̂l + e2v̂l = v̂l for all l ∈ {1, . . . , n}. �
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Remark. For (X̂ ; Ŷ ) ∈ V 2, we have

(X̂ ; Ŷ ) = (X̂ ; 0̂) +V 2 (0̂; Ŷ )

= (1e1 + 0e2) ·V 2 (X̂ ; X̂) +V 2 (0e1 + 1e2) ·V 2 (Ŷ ; Ŷ )

= e1 ·V 2 (X̂; X̂) +V 2 e2 ·V 2 (Ŷ ; Ŷ ),

where (X̂; X̂) and (Ŷ ; Ŷ ) are in the vector space V ′ :=
{∑n

l=1 cl ·V 2 (v̂l; v̂l) | cl ∈
C(i1)

}
associated with the free T-module V 2 using the T-basis

{
(v̂l; v̂l) | l ∈

{1, . . . , n}
}
.

Now, from Theorem 3 we obtain the following corollary.

Corollary 2. Let M be a free T-module with a finite T-basis. The submodule vector
space V associated with M is invariant under a new T-basis of M generated by
another basis of V .

4. Bicomplex Scalar Product

Let us begin with a preliminary definition.

Definition 1. A hyperbolic number w = ae1 + be2 is defined to be positive if
a, b ∈ R+. We denote the set of all positive hyperbolic numbers by

D
+ := {ae1 + be2 | a, b ≥ 0}.

We are now able to give a definition of a bicomplex scalar product. (In this
article, the physicist convention will be used for the order of the elements in the
bicomplex scalar product.)

Definition 2. Let M be a free T-module of finite dimension. With each pair X̂
and Ŷ in M , taken in this order, we associate a bicomplex number, which is their
bicomplex scalar product (X̂, Ŷ ), and which satisfies the following properties:

1. (X̂, Ŷ1 + Ŷ2) = (X̂, Ŷ1) + (X̂, Ŷ2), ∀X̂, Ŷ1, Ŷ2 ∈M ;

2. (X̂, αŶ ) = α(X̂, Ŷ ), ∀α ∈ T, ∀X̂, Ŷ ∈M ;

3. (X̂, Ŷ ) = (Ŷ , X̂)†3 , ∀X̂, Ŷ ∈M ;

4. (X̂, X̂) = 0 ⇔ X̂ = 0, ∀X̂ ∈M.

As a consequence of property 3, we have that (X̂, X̂) ∈ D. Note that definition 2
is a general definition of a bicomplex scalar product. However, in this article we
will also require the bicomplex scalar product (·, ·) to be hyperbolic positive, i.e.

(X̂, X̂) ∈ D
+, ∀X̂ ∈M (4.1)
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and closed under the vector space V , i.e.

(X̂, Ŷ ) ∈ C(i1), ∀X̂, Ŷ ∈ V. (4.2)

For the rest of this paper, we will assume a given T-basis for M , which implies
a given vector space V .

Theorem 4. Let X̂, Ŷ ∈M , then

(X̂, Ŷ ) = e1(X̂e1 , Ŷe1) + e2(X̂e2 , Ŷe2) (4.3)

and
Pk

(
(X̂, Ŷ )

)
= (X̂, Ŷ )ek

= (X̂ek
, Ŷek

) ∈ C(i1) (4.4)
for k = 1, 2.

Proof. From equation (3.2), it comes automatically that Pk

(
(X̂, Ŷ )

)
= (X̂, Ŷ )ek

∈
C(i1) for k = 1, 2. Let X̂ = e1X̂e1 + e2X̂e2 and Ŷ = e1Ŷe1 + e2Ŷe2 , then using
the properties of the bicomplex scalar product, we also have

(X̂, Ŷ ) = (e1X̂e1 + e2X̂e2 , e1Ŷe1 + e2Ŷe2)

= (e1X̂e1 + e2X̂e2 , e1Ŷe1) + (e1X̂e1 + e2X̂e2 , e2Ŷe2)

= (e1Ŷe1 , e1X̂e1 + e2X̂e2)†3 + (e2Ŷe2 , e1X̂e1 + e2X̂e2)†3

= (e1Ŷe1 , e1X̂e1)†3 + (e1Ŷe1 , e2X̂e2)†3

+(e2Ŷe2 , e1X̂e1)†3 + (e2Ŷe2 , e2X̂e2)†3

= e1
†3(e1Ŷe1 , X̂e1)

†3 + e2
†3(e1Ŷe1 , X̂e2)†3

+e1
†3(e2Ŷe2 , X̂e1)†3 + e2

†3(e2Ŷe2 , X̂e2)†3

= e1
†3e1(X̂e1 , Ŷe1) + e2

†3e1(X̂e2 , Ŷe1)

+e1
†3e2(X̂e1 , Ŷe2) + e2

†3e2(X̂e2 , Ŷe2)

= e1(X̂e1 , Ŷe1) + e2(X̂e2 , Ŷe2).

Hence,
(X̂, Ŷ ) = e1(X̂e1 , Ŷe1) + e2(X̂e2 , Ŷe2)

and, from property (4.2), we obtain

Pk((X̂, Ŷ )) = (X̂, Ŷ )ek
= (X̂ek

, Ŷek
) ∈ C(i1)

for k = 1, 2. �

Theorem 5. {V ; (·, ·)} is a complex (in C(i1)) pre-Hilbert space.

Proof. By definition, V ⊆M . Hence, we obtain automatically that:

1. (X̂, Ŷ1 + Ŷ2) = (X̂, Ŷ1) + (X̂, Ŷ2), ∀X̂, Ŷ1, Ŷ2 ∈ V ;

2. (X̂, αŶ ) = α(X̂, Ŷ ), ∀α ∈ C(i1) and ∀X̂, Ŷ ∈ V ;

3. (X̂, X̂) = 0 ⇔ X̂ = 0, ∀X̂ ∈ V.
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Moreover, the fact that (X̂, Ŷ ) ∈ C(i1) implies that (X̂, Ŷ ) = (Ŷ , X̂)†3 = (Ŷ , X̂)
and (X̂, X̂) ∈ D+ ∩ C(i1) = R+. Hence, {V ; (·, ·)} is a complex (in C(i1)) pre-
Hilbert space. �

Remark. We note that the results obtained in this theorem are still valid by using
†1 instead of †3 in the definition of the bicomplex scalar product.

Let us denote ‖ X̂ ‖:= (X̂, X̂)
1
2 , ∀X̂ ∈ V .

Corollary 3. Let X̂ ∈ V . The function X̂ 
−→‖ X̂ ‖≥ 0 is a norm on V .

Corollary 4. Let X̂ ∈M; then

Pk

(
(X̂, X̂)

)
= (X̂, X̂)ek

= (X̂ek
, X̂ek

) =‖ X̂ek
‖2

for k = 1, 2.

Now, let us extend this norm on M with the following function:

‖ X̂ ‖:=
∣
∣
∣(X̂, X̂)

1
2

∣
∣
∣ =

∣
∣
∣e1 ‖ X̂e1 ‖ +e2 ‖ X̂e2 ‖

∣
∣
∣, ∀X̂ ∈M. (4.5)

This norm has the following properties.

Theorem 6. Let X̂, Ŷ ∈M and d(X̂, Ŷ ) :=‖ X̂ − Ŷ ‖; then

1. ‖ X̂ ‖≥ 0

2. ‖ X̂ ‖= 0 ⇔ X̂ = 0

3. ‖ αX̂ ‖= |α| ‖ X̂ ‖, ∀α ∈ C(i1) or C(i2)

4. ‖ αX̂ ‖≤ √
2 |α|3 ‖ X̂ ‖, ∀α ∈ T

5. ‖ X̂ + Ŷ ‖≤‖ X̂ ‖ + ‖ Ŷ ‖
6. {M,d} is a metric space.

Proof. The proof of 1 and 2 comes directly from equation (4.5). Let X̂ = e1X̂e1 +
e2X̂e2 ∈M and α ∈ C(i1) or C(i2), then

‖ αX̂ ‖ =
∣
∣
∣(αX̂, αX̂)

1
2

∣
∣
∣

=
∣
∣
∣
(
αα(X̂, X̂)

) 1
2

∣
∣
∣

=
∣
∣∣
∣
(
e1|α|2(X̂, X̂)e1 + e2|α|2(X̂, X̂)e2

) 1
2

∣
∣∣
∣

=
∣
∣
∣e1|α|(X̂, X̂)

1
2
e1 + e2|α|(X̂, X̂)

1
2
e2

∣
∣
∣

= |α|
∣
∣
∣e1 ‖ X̂e1 ‖ +e2 ‖ X̂e2 ‖

∣
∣
∣

= |α| ‖ X̂ ‖ .



Bicomplex Quantum Mechanics: II. The Hilbert Space 11

More generally, if α ∈ T, we obtain

‖ αX̂ ‖ =
∣
∣
∣(αX̂, αX̂)

1
2

∣
∣
∣

=
∣
∣
∣
(
αα†3(X̂, X̂)

) 1
2

∣
∣
∣

=
∣∣
∣
(|α|2j (X̂, X̂)

) 1
2

∣∣
∣

=
∣
∣
∣|α|j(X̂, X̂)

1
2

∣
∣
∣

=
∣
∣∣|α|j ‖ X̂ ‖

∣
∣∣

≤ √
2
∣
∣|α|j

∣
∣ ‖ X̂ ‖

=
√

2 |α|3 ‖ X̂ ‖ .
To complete the proof, we need to establish a triangular inequality over the T-
module M . Let X̂, Ŷ ∈M , then

‖ X̂ + Ŷ ‖ = |(X̂ + Ŷ , X̂ + Ŷ )
1
2 |

=
∣
∣e1 ‖ (X̂ + Ŷ )e1 ‖ +e2 ‖ (X̂ + Ŷ )e2 ‖ ∣

∣

=
∣
∣e1 ‖ X̂e1 + Ŷe1 ‖ +e2 ‖ X̂e2 + Ŷe2 ‖ ∣

∣

=

(
‖ X̂e1 + Ŷe1 ‖2 + ‖ X̂e2 + Ŷe2 ‖2

2

) 1
2

≤
(( ‖ X̂e1 ‖ + ‖ Ŷe1 ‖ )2 +

( ‖ X̂e2 ‖ + ‖ Ŷe2 ‖ )2

2

) 1
2

=
∣
∣∣e1

( ‖ X̂e1 ‖ + ‖ Ŷe1 ‖ )
+ e2

( ‖ X̂e2 ‖ + ‖ Ŷe2 ‖ )∣∣∣

=
∣
∣
∣
(
e1 ‖ X̂e1 ‖ +e2 ‖ X̂e2 ‖ )

+
(
e1 ‖ Ŷe1 ‖ +e2 ‖ Ŷe2 ‖ )∣∣

∣

≤ ‖ X̂ ‖ + ‖ Ŷ ‖ .
Now, using properties 1, 2, 3 and 5, it is easy to obtain that {M,d} is a metric
space. �

With the bicomplex scalar product, it is possible to obtain a bicomplex ver-
sion of the well known Schwarz inequality.

Theorem 7 (Bicomplex Schwarz inequality). Let X̂, Ŷ ∈M ; then

|(X̂, Ŷ )| ≤ |(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2 | ≤

√
2 ‖ X̂ ‖ ‖ Ŷ ‖ .

Proof. From the complex (in C(i1)) Schwarz inequality we have that

|(X̂, Ŷ )| ≤ ‖ X̂ ‖ ‖ Ŷ ‖ ∀X̂, Ŷ ∈ V. (4.6)
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Therefore, if X̂, Ŷ ∈M , we obtain

|(X̂, Ŷ )| = |e1(X̂, Ŷ )e1 + e2(X̂, Ŷ )e2 |
= |e1(X̂e1 , Ŷe1) + e2(X̂e2 , Ŷe2)|

=

(
|(X̂e1 , Ŷe1)|2 + |(X̂e2 , Ŷe2)|2

2

) 1
2

≤
(
‖ X̂e1 ‖2‖ Ŷe1 ‖2 + ‖ X̂e2 ‖2‖ Ŷe2 ‖2

2

) 1
2

=
∣∣e1 ‖ X̂e1 ‖ ‖ Ŷe1 ‖ +e2 ‖ X̂e2 ‖ ‖ Ŷe2 ‖ ∣∣

= |(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2 |.

Hence, |(X̂, Ŷ )| ≤ |(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2 | ≤ √

2 ‖ X̂ ‖ ‖ Ŷ ‖. �

5. Hyperbolic Scalar Product

From the preceding section, it is now easy to define the hyperbolic version of the
bicomplex scalar product.

Definition 3. Let M be a free D-module of finite dimension. With each pair X̂
and Ŷ in M , taken in this order, we associate a hyperbolic number, which is their
hyperbolic scalar product (X̂, Ŷ ), and which satisfies the following properties:

1. (X̂, Ŷ1 + Ŷ2) = (X̂, Ŷ1) + (X̂, Ŷ2)

2. (X̂, αŶ ) = α(X̂, Ŷ ), ∀α ∈ D

3. (X̂, Ŷ ) = (Ŷ , X̂)

4. (X̂, X̂) = 0 ⇔ X̂ = 0.

All definitions and results of Section 4 can be applied directly in the hyper-
bolic case if the hyperbolic scalar product (·, ·) is hyperbolic positive i.e.

(X̂, X̂) ∈ D
+ ∀X̂ ∈M (5.1)

and closed under the real vector space V :=

{
n∑

l=1

xlm̂l | xl ∈ R

}

i.e.

(X̂, Ŷ ) ∈ C(i1) ∩ D = R ∀X̂, Ŷ ∈ V (5.2)

for a specific D-basis
{
m̂l | l ∈ {1, . . . , n}

}
of M . In particular, we obtain a hy-

perbolic Schwarz inequality. Moreover, it is always possible to obtain the angle θ,
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between X̂ and Ŷ in V , with the following well known formula:

cos θ =
(X̂, Ŷ )

‖ X̂ ‖ ‖ Ŷ ‖ . (5.3)

From this result, we can derive the following analogous result for the D-module
M .

Theorem 8. Let X̂, Ŷ ∈M and θk be the angle between X̂ek
and Ŷek

for k = 1, 2.
Then,

cos
(
θ1 + θ2

2
+
θ1 − θ2

2
j
)

=
(X̂, Ŷ )

(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2
.

Proof. From the identity (5.3), we have

(cos θ1)e1 + (cos θ2)e2 =
(X̂e1 , Ŷe1)

‖ X̂e1 ‖ ‖ Ŷe1 ‖e1 +
(X̂e2 , Ŷe2)

‖ X̂e2 ‖ ‖ Ŷe2 ‖e2

=
(X̂, Ŷ )

(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2
.

Moreover, it is easy to show that cos(θ1e1 + θ2e2) = (cos θ1)e1 + (cos θ2)e2 and
θ1e1 + θ2e2 = θ1+θ2

2 + θ1−θ2
2 j (see [12]). Hence,

cos
(
θ1 + θ2

2
+
θ1 − θ2

2
j
)

=
(X̂, Ŷ )

(X̂, X̂)
1
2 (Ŷ , Ŷ )

1
2
. �

From this result, it is now possible to define the “hyperbolic angle” between
two elements of a D-module M .

Definition 4. Let X̂, Ŷ ∈M and θk be the angle between X̂ek
and Ŷek

for k = 1, 2.
We define the hyperbolic angle between X̂ and Ŷ as

θ1 + θ2
2

+
θ1 − θ2

2
j.

We note that our definition of the hyperbolic scalar product is different from the
definitions given in [8, 9] and [19].

6. Bicomplex Hilbert Space

Definition 5. Let M be a free T-module with a finite T-basis. Let also (·, ·) be a
bicomplex scalar product defined on M . The space {M, (·, ·)} is called a T-inner
product space.

Definition 6. A complete T-inner product space is called a T-Hilbert space.

Lemma 1. Let X̂ ∈M ; then

‖ X̂ek
‖≤

√
2 ‖ X̂ ‖, for k = 1, 2.
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Proof. For k = 1, 2, we have

‖ X̂ek
‖ ≤

√
2

(
‖ X̂e1 ‖2 + ‖ X̂e2 ‖2

2

) 1
2

=
√

2
∣
∣e1 ‖ X̂e1 ‖ +e2 ‖ X̂e2 ‖ ∣

∣

=
√

2 ‖ X̂ ‖ . �

Lemma 2. The pre-Hilbert space {V, (·, ·)} is closed in the metric space {M, (·, ·)}.
Proof. Let X̂n = e1X̂n + e2X̂n ∈ V ∀n ∈ N and X̂ = e1X̂e1 + e2X̂e2 ∈ M .
Suppose that X̂n → X̂ whenever n → ∞ then ‖ X̂n − X̂ ‖→ 0 as n → ∞
i.e. ‖ X̂n − (e1X̂e1 + e2X̂e2) ‖= ‖ (e1X̂n + e2X̂n) − (e1X̂e1 + e2X̂e2) ‖ =
‖ e1(X̂n − X̂e1) + e2(X̂n − X̂e2) ‖→ 0 as n → ∞. Therefore, from Lemma 1
we have that

‖ X̂n − X̂ek
‖ ≤

√
2 ‖ e1(X̂n − X̂e1) + e2(X̂n − X̂e2) ‖→ 0

as n→ ∞ for k = 1, 2. Hence, X̂e1 = X̂e2 = X̂ and X̂ = e1X̂ + e2X̂ ∈ V . �

Theorem 9. A T-inner product space {M, (·, ·)} is a T-Hilbert space if and only if
{V, (·, ·)} is a Hilbert space.

Proof. From Theorem 5, {V, (·, ·)} is a pre-Hilbert space. So, we have to prove
that {M, (·, ·)} is complete if and only if {V, (·, ·)} is complete. By definition V ⊆
M , therefore if M is complete then V is also complete since V is closed in M .
Conversely, let X̂n = e1(X̂n)e1 + e2(X̂n)e2 ∈M ∀n ∈ N be a Cauchy sequence in
M . Then, from Lemma 1, we have

‖ (X̂m)ek
− (X̂n)ek

‖=‖ (X̂m − X̂n)ek
‖≤

√
2 ‖ X̂m − X̂n ‖

for k = 1, 2. So, (X̂n)ek
is also a Cauchy sequence in V for k = 1, 2. Therefore,

there exist X̂e1 , X̂e2 ∈ V such that (X̂n)ek
→ X̂ek

as n→ ∞ for k = 1, 2.
Now, from the triangular inequality, if we let X̂ := e1X̂e1 + e2X̂e2 , then we

obtain

‖ X̂n − X̂ ‖ = ‖ e1

(
(X̂n)e1 − X̂e1

)
+ e2

(
(X̂n)e2 − X̂e2

) ‖
≤ ‖ e1

(
(X̂n)e1 − X̂e1

) ‖ + ‖ e2

(
(X̂n)e2 − X̂e2

) ‖
≤

√
2 |e1|3 ‖ (X̂n)e1 − X̂e1 ‖

+
√

2 |e2|3 ‖ (X̂n)e2 − X̂e2 ‖
= ‖ (X̂n)e1 − X̂e1 ‖ + ‖ (X̂n)e2 − X̂e2 ‖→ 0

as n→ ∞. Hence, X̂n → X̂ ∈M as n→ ∞. �
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Examples of Bicomplex Hilbert Spaces

1. Let us first consider M = T, the canonical T-module over the ring of bi-
complex numbers. We consider now the trivial T-basis {1}. In this case, the
submodule vector space V is simply V = C(i1). Let (·, ·)1 and (·, ·)2 be two
scalar products on V . It is always possible to construct a general bicomplex
scalar product as follows:
Let

w1 = (z11 − z12i1)e1 + (z11 + z12i1)e2

and
w2 = (z21 − z22i1)e1 + (z21 + z22i1)e2,

where, z11, z12, z21, z22 ∈ C(i1). We define

(w1, w2) := (z11 − z12i1, z21 − z22i1)1e1 +(z11 + z12i1, z21 + z22i1)2e2. (6.1)

However, this bicomplex scalar product is not closed under C(i1). In fact,
(·, ·) will be closed under C(i1) if and only if (·, ·)1 = (·, ·)2. From Theorem
9, we obtain the following result.

Theorem 10. Let T be the canonical T-module over the ring of bicomplex num-
bers with a scalar product (·, ·) on C(i1). Let also w1 = (z11−z12i1)e1+(z11+
z12i1)e2 and w2 = (z21 − z22i1)e1 + (z21 + z22i1)e2, where z11, z12, z21, z22 ∈
C(i1). If we define

(w1, w2) := (z11 − z12i1, z21 − z22i1)e1 + (z11 + z12i1, z21 + z22i1)e2, (6.2)

then {T, (·, ·)} is a bicomplex Hilbert space if and only if {C(i1), (·, ·)} is a
Hilbert space.

As an example, let us consider {C(i1), (·, ·)} with the canonical scalar
product given by

(z1, z2) = (x1 + y1i1, x2 + y2i1)
:= x1x2 + y1y2.

It is well known that {C(i1), (·, ·)} is a Hilbert space. Hence, from Theorem
10, {T, (·, ·)} is a bicomplex Hilbert space. Moreover, it is easy to see that

‖ w ‖= ||w|j| = |w|3 = |w|,
i.e. the Euclidean metric of R4.

2. Consider now M = Tn, the n-dimensional module with the canonical T-basis
{êi | i ∈ {1, . . . , n}}, the columns of the identity matrix In. For any two

elements X̂, Ŷ ∈ T
n given by X̂ =

n∑

i=1

xi êi and Ŷ =
n∑

i=1

yi êi, we define the

bicomplex scalar product as

(X̂, Ŷ ) := (X̂†3)� · Ŷ =
n∑

i=1

x
†3
i yi ∈ T. (6.3)
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It is now easy to verify that properties 1, 2 and 3 of Definition 2 are triv-
ially satisfied. This bicomplex scalar product also implies that (X̂, X̂) =
∑n

i=1 x
†3
i xi =

∑n
i=1 |xi|2j = e1

∑n
i=1 |x1i − x2ii1|2 + e2

∑n
i=1 |x1i + x2ii1|2

where xi = x1i + x2ii2 = (x1i − x2ii1)e1 + (x1i + x2ii1)e2 for i ∈ {1, . . . , n}.
Hence, the property 4 of Definition 2 is also satisfied and

‖ X̂ ‖= |(X̂, X̂)
1
2 | =

∣
∣
∣
( n∑

i=1

|xi|2j
) 1

2

∣
∣
∣. (6.4)

In this example, the complex vector space V = {∑n
i=1 xiêi | xi ∈ C(i1)} is

simply the standard complex vector space isomorphic to Cn. Moreover, the
closure property is satisfied since for X̂, Ŷ ∈ V we have xi, yi ∈ C(i1) and
x
†3
i yi = xi yi ∈ C(i1) such that equation (6.3) gives an element of C(i1).

7. The Dirac Notation Over M

In this section we introduce the Dirac notation usually used in quantum mechanics.
For this we have to define correctly kets and bras over a bicomplex Hilbert space
which, we remind, is fundamentally a module.

Let M be a T-module which is free with the finite T-basis {|ml〉 | l ∈
{1, . . . , n}}. Any element of M will be called a ket module or, more simply, a
ket.

Let us rewrite the definition of the bicomplex scalar product in terms of the
ket notation.

Definition 7. Let M be a T-module which is free with the following finite T-basis
{|ml〉 | l ∈ {1, . . . , n}}. With each pair |φ〉 and |ψ〉 in M , taken in this order, we
associate a bicomplex number, which is their bicomplex scalar product (|φ〉, |ψ〉),
and which satisfies the following properties:

1. (|φ〉, |ψ1〉 + |ψ2〉) = (|φ〉, |ψ1〉) + (|φ〉, |ψ2〉)
2. (|φ〉, α|ψ〉) = α(|φ〉, |ψ〉), ∀α ∈ T

3. (|φ〉, |ψ〉) = (|ψ〉, |φ〉)†3
4. (|φ〉, |φ〉) = 0 ⇔ |φ〉 = 0.

Let us now define the dual space M∗.

Definition 8. A linear functional χ is a linear operation which associates a bicom-
plex number with every ket |ψ〉:
1) |ψ〉 −→ χ(|ψ〉) ∈ T

2) χ(λ1|ψ1〉 + λ2|ψ2〉) = λ1χ(|ψ1〉) + λ2χ(|ψ2〉), λ1, λ2 ∈ T.

It can be shown that the set of linear functionals defined on the kets |ψ〉 ∈ M
constitutes a T-module space, which is called the dual space of M and which will
be symbolized by M∗.
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Using this definition of M∗, let us define the bra notation.

Definition 9. Any element of the space M∗ is called a bra module or, more simply,
a bra. It is symbolized by 〈 · |.

For example, the bra 〈χ| designates the bicomplex linear functional χ and we
shall henceforth use the notation 〈χ|ψ〉 to denote the number obtained by causing
the linear functional 〈χ| ∈M∗ to act on the ket |ψ〉 ∈M :

χ(|ψ〉) := 〈χ|ψ〉.
The existence of a bicomplex scalar product in M will now enable us to show

that we can associate, with every ket |φ〉 ∈ M , an element of M∗, which will be
denoted by 〈φ|.

The ket |φ〉 does indeed enable us to define a linear functional: the one which
associates (in a linear way), with each ket |ψ〉 ∈M , a bicomplex number which is
equal to the scalar product (|φ〉, |ψ〉) of |ψ〉 by |φ〉. Let 〈φ| be this linear functional;
it is thus defined by the relation:

〈φ|ψ〉 = (|φ〉, |ψ〉). (7.1)

Therefore, the properties of the bicomplex scalar product can be rewritten as:

1. 〈φ|(|ψ1〉 + |ψ2〉
)

= 〈φ|ψ1〉 + 〈φ|ψ2〉
2. 〈φ|αψ〉 = α 〈φ|ψ〉, ∀α ∈ T

3. 〈φ|ψ〉 = 〈ψ|φ〉†3

4. 〈φ|φ〉 = 0 ⇔ |φ〉 = 0.

Now, let us define the corresponding projections for the Dirac notation as
follows.

Definition 10. Let |ψ〉,|φ〉 ∈M and |χ〉 ∈ V . For k = 1, 2, we define:

1. |ψek
〉 := Pk(|ψ〉) ∈ V

2. 〈φek
| := Pk(〈φ|) : V −→ C(i1), where |χ〉 
→ Pk

(〈φ|χ〉).
The first definition gives the projection |ψek

〉 of the ket |ψ〉 of M . This is well
defined from equation (3.2). However, the second definition is more subtle. In the
next two theorems, we show that 〈φek

| is really the bra associated with the ket
|φek

〉 in V .

Theorem 11. Let |φ〉 ∈M ; then

〈φek
| ∈ V ∗

for k = 1, 2.
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Proof. Let λ1, λ2 ∈ C(i1) and |ψ1〉, |ψ2〉 ∈ V , then

〈φek
|(λ1|ψ1〉 + λ2|ψ2〉) = Pk

(
〈φ|(λ1|ψ1〉 + λ2|ψ2〉

))

= Pk

(
λ1〈φ|ψ1〉 + λ2〈φ|ψ2〉

)

= λ1Pk

(
〈φ|ψ1〉

)
+ λ2Pk

(
〈φ|ψ2〉

)

= λ1〈φek
|(|ψ1〉) + λ2〈φek

|(|ψ2〉)
for k = 1, 2. �

We will now show that the functional 〈φek
| can be obtained from the ket |φek

〉.
Theorem 12. Let |φ〉 ∈M and |ψ〉 ∈ V; then

〈φek
|(|ψ〉) = 〈φek

|ψ〉 (7.2)

for k = 1, 2.

Proof. Using (4.4) in Theorem 4 and the fact that Pk(|ψ〉) = |ψ〉, we obtain

〈φek
|(|ψ〉) = Pk

(
〈φ|ψ〉

)

= Pk

(
(|φ〉, |ψ〉)

)

=
(
Pk(|φ〉), Pk(|ψ〉)

)

=
(
Pk(|φ〉), |ψ〉

)

=
(
|φek

〉, |ψ〉
)

= 〈φek
|ψ〉

for k = 1, 2. �

Corollary 5. Let |φ〉, |ψ〉 ∈M; then

〈φek
|ψek

〉 = 〈φ|ψ〉ek
(7.3)

for k = 1, 2.

Proof. From Theorem 12 and the properties of the projectors Pk, we obtain

〈φek
|ψek

〉 = Pk

(
〈φ|ψek

〉
)

= Pk

(
e1〈φ|ψe1〉 + e2〈φ|ψe2〉

)

= Pk

(
〈φ|(e1|ψe1〉 + e2|ψe2〉)

)

= Pk

(
〈φ|ψ〉

)

= 〈φ|ψ〉ek

for k = 1, 2. �
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The bicomplex scalar product is antilinear. Indeed, by using the notation
(7.1) we obtain

(λ1|φ1〉 + λ2|φ2〉, |ψ〉) = (|ψ〉, λ1|φ1〉 + λ2|φ2〉)†3

= (λ1〈ψ|φ1〉 + λ2〈ψ|φ2〉)†3

= λ
†3
1 〈φ1|ψ〉 + λ

†3
2 〈φ2|ψ〉

=
(
λ
†3
1 〈φ1| + λ

†3
2 〈φ2|

)|ψ〉,
where λ1, λ2 ∈ T and |ψ〉, |φ1〉, |φ2〉 ∈ M . Therefore the bra associated with the
ket λ1|φ1〉 + λ2|φ2〉 is given by λ†31 〈φ1| + λ

†3
2 〈φ2|:

λ1|φ1〉 + λ2|φ2〉 � λ
†3
1 〈φ1| + λ

†3
2 〈φ2|.

In particular, Theorem 1 tells us that every ket |ψ〉 ∈ M can be written in the
form |ψ〉 = e1|ψe1〉 + e2|ψe2〉. Therefore, we have |ψ〉 = e1|ψe1〉 + e2|ψe2〉 �
〈ψ| = e1〈ψe1 | + e2〈ψe2 | since (ek)†3 = ek for k = 1, 2.

8. Bicomplex Linear Operators

8.1. Basic results and definitions

The bicomplex linear operators A : M →M are defined by

|ψ′〉 = A|ψ〉
A(λ1|ψ1〉 + λ2|ψ2〉) = λ1A|ψ1〉 + λ2A|ψ2〉,

where λ1, λ2 ∈ T. For a fixed |φ〉 ∈M , a fixed linear operator A and an arbitrary
|ψ〉 ∈M , we define the bra 〈φ|A by the relation

(〈φ|A)|ψ〉 := 〈φ|(A|ψ〉).
The operator A associates a new bra 〈φ|A for every bra 〈φ|. It is easy to show that
this correspondence is linear, i.e. (λ1〈φ1| + λ2〈φ2|)A = λ1〈φ1|A+ λ2〈φ2|A.

For a given linear operator A : M → M , the bicomplex adjoint operator A∗

is the operator with the following correspondence

|ψ′〉 = A|ψ〉 � 〈ψ′| = 〈ψ|A∗. (8.1)

The bicomplex adjoint operator A∗ is linear: the proof is analogous to the standard
case except that the standard complex conjugate is replaced by †3 everywhere.
Note that since we have 〈ψ′|φ〉 = 〈φ|ψ′〉†3 , we obtain

〈ψ|A∗|φ〉 = 〈φ|A|ψ〉†3 , (8.2)

by using expressions (8.1).
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It is easy to show that for any bicomplex linear operator A : M → M and
λ ∈ T, we have the following standard properties:

(A∗)∗ = A (8.3)

(λA)∗ = λ†3A∗ (8.4)
(A+B)∗ = A∗ +B∗ (8.5)

(AB)∗ = B∗A∗. (8.6)

These properties are proven similarly as the standard cases.

Definition 11. Let M be a bicomplex Hilbert space and A : M →M a bicomplex
linear operator. We define the projection Pk(A) : M → V of A, for k = 1, 2, as
follows :

Pk(A)|ψ〉 := Pk(A|ψ〉), ∀ |ψ〉 ∈M.

The projection Pk(A) is clearly a bicomplex linear operator for k = 1, 2. Moreover,
we have the following specific results.

Theorem 13. Let M be a bicomplex Hilbert space, A : M →M a bicomplex linear
operator and |ψ〉 = e1|ψe1〉 + e2|ψe2〉 ∈M . Then

(i) A|ψ〉 = e1P1(A)|ψe1 〉 + e2P2(A)|ψe2 〉.
(ii) Pk(A)∗ = Pk(A∗) where Pk(A)∗ is the standard complex adjoint operator

over C(i1) associated with the bicomplex linear operator Pk(A) restricted to
the submodule vector space V , defined in (3.1), for k = 1, 2.

Proof. Part (i) is obtained as follows:

A|ψ〉 = A
(
e1|ψe1〉 + e2|ψe2〉

)

= e1A|ψe1〉 + e2A|ψe2〉
= e1

(
e1P1(A|ψe1〉) + e2P2(A|ψe1〉)

)

+e2

(
e1P1(A|ψe2〉) + e2P2(A|ψe2〉)

)

= e1

(
e1P1(A)|ψe1〉 + e2P2(A)|ψe1〉

)

+e2

(
e1P1(A)|ψe2〉 + e2P2(A)|ψe2〉

)

= e1P1(A)|ψe1〉 + e2P2(A)|ψe2〉.
To show (ii), we use (i) and Corollary 5 to decompose the correspondence (8.1)
into the equivalent following correspondence in V :

|ψ′
ek
〉 = Pk(A)|ψek

〉 � 〈ψ′
ek
| = 〈ψek

|Pk(A∗) for k = 1, 2. (8.7)

Hence, Pk(A)∗ = Pk(A∗). �



Bicomplex Quantum Mechanics: II. The Hilbert Space 21

8.2. Bicomplex Eigenvectors and Eigenvalues on M

One can show now that the bicomplex eigenvector equation A|ψ〉 = λ|ψ〉, with
λ ∈ T, is equivalent to the system of two eigenvector equations given by

P1(A)|ψe1〉 = λ1|ψe1〉
P2(A)|ψe2〉 = λ2|ψe2〉,

where λ = e1λ1 + e2λ2, λ1, λ2 ∈ C(i1) and |ψ〉 = e1|ψe1〉 + e2|ψe2〉. Indeed, we
have

A|ψ〉 = λ|ψ〉 ⇔ A|ψ〉 = (λ1e1 + λ2e2)(e1|ψe1〉 + e2|ψe2〉)

⇔ e1P1(A)|ψe1〉 + e2P2(A)|ψe2〉 = e1λ1|ψe1〉 + e2λ2|ψe2〉

⇔ Pk(A)|ψek
〉 = λk|ψek

〉, k = 1, 2. (8.8)

Suppose now that
{
|vl〉 | l ∈ {1, . . . , n}

}
is an orthonormal basis of V (which

is also a basis ofM from Theorem 3) with |ψek
〉 =

n∑

j=1

ckj |vj〉, ckj ∈ C(i1), k = 1, 2.

Then from (8.8) we find
n∑

j=1

ckjPk(A)|vj〉 = λk

n∑

j=1

ckj |vj〉 for k = 1, 2. Applying

now the functional 〈vi| on this expression, we obtain
n∑

j=1

ckj〈vi|Pk(A)|vj〉 = λk

n∑

j=1

ckj〈vi|vj〉

= λkcki,

where the last line is a consequence of the orthogonality 〈vi|vj〉 = δij of the basis
of V . Now, by definition, we have that Pk(A)|vj〉 ∈ V for k = 1, 2. Moreover since
|vi〉 is also an element of V , then the closure of the scalar product of two elements
of V , see equation (4.2), implies that the matrix Ak defined by

(Ak)ij := 〈vi|Pk(A)|vj〉
is in C(i1) for k = 1, 2. Therefore, we find that

n∑

j=1

(
(Ak)ij − λkδij

)
ckj = 0, k = 1, 2.

Each equation, i.e. k = 1 and k = 2, is a homogeneous linear system with n
equations and n unknowns which can be solved completely since all components
are in C(i1). Therefore, the system possesses a nontrivial solution if and only if
det(Ak − λkIn) = 0 for k = 1, 2.

In standard quantum mechanics self-adjoint operators (Hermitian operators)
play a very important role. In analogy with the standard case, a linear operator
A is defined to be a bicomplex self-adjoint operator if and only if A = A∗.
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Theorem 14. Let A : M → M be a bicomplex self-adjoint operator and |ψ〉 ∈M be
an eigenvector of the equation A|ψ〉 = λ|ψ〉, with |ψ〉 /∈ NC. Then the eigenvalues
of A are in the set of hyperbolic numbers.

Proof. If A is a bicomplex self-adjoint operator A = A∗ on M and A|ψ〉 = λ|ψ〉
with λ ∈ T, then

〈ψ|A|ψ〉 = λ〈ψ|ψ〉, (8.9)

where 〈ψ|ψ〉 ∈ D+. Moreover, we have

〈ψ|A|ψ〉†3 = 〈ψ|A∗|ψ〉 = 〈ψ|A|ψ〉.
This implies that 〈ψ|A|ψ〉 ∈ D. Since 〈ψ|ψ〉 /∈ NC ⇔ |ψ〉 /∈ NC, we can divide
each side of equation (8.9) by 〈ψ|ψ〉. Therefore, λ can only be in D. �

Remark. The requirement that the eigenvector |ψ〉 is not in the null-cone means
that |ψ〉 = e1|ψe1〉 + e2|ψe2〉 with |ψe1〉 �= |0〉 and |ψe2〉 �= |0〉.
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