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Abstract. We introduce the set of bicomplex numbers T which is a commutative
ring with zero divisors defined by T = {w0 + w1i1 + w2i2 + w3j| w0, w1, w2, w3 ∈ R}
where i21 = −1, i22 = −1, j2 = 1, i1i2 = j = i2i1. We present the conjugates and
the moduli associated with the bicomplex numbers. Then we study the bicomplex
Schrödinger equation and found the continuity equations. The discrete symmetries of
the system of equations describing the bicomplex Schrödinger equation are obtained.
Finally, we study the bicomplex Born formulas under the discrete symmetries. We
obtain the standard Born’s formula for the class of bicomplex wave functions having
a null hyperbolic angle.

1. Introduction

In this paper we investigate the bicomplex Schrödinger equation where bicom-
plex numbers T (also called “tetranumbers” in the literature) are defined as
the set T := {w0i0 + w1i1 + w2i2 + w3j| w0, w1, w2, w3 ∈ R} with
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· i0 i1 i2 j

i0 i0 i1 i2 j
i1 i1 −i0 j −i2
i2 i2 j −i0 −i1
j j −i2 −i1 i0

(1.1)

We call i1 and i2 the imaginary units and we attribute to j the name of
hyperbolic (imaginary) unit. The set of bicomplex numbers is a commutative
ring with unit and zero divisors. Hence, contrary to quaternions, bicomplex
numbers are commutative with some non-invertible elements situated on the
“null cone”.

The extension of quantum mechanics beyond the field of complex numbers
have been studied by different authors [1, 2, 3, 4, 5]. We know from Frobenius
that, in the case of algebra without zero divisors, the investigation must be lim-
ited to three fields: real numbers R, complex numbers C and quaternions H.
However, recently, some interest have been deployed to study quantum mechan-
ics beyond the paradigm of algebra without zero divisors [2, 4, 7], principally
over hyperbolic numbers D (also called duplex numbers in the literature). In [4]
the author has shown that quantum mechanics over the hyperbolic numbers,
called here “hyperbolic quantum mechanics”, behaves well 1) in the proba-
bilistic interpretation via the Born’s formula, 2) for the continuity equation
∂tP + ∇ · J = 0 (where P and J are respectively the scalar-valued “density”
and vector-valued “current”) and 3) for the free-particle. However, the main
difference between standard quantum mechanics and hyperbolic quantum me-
chanics comes from the fact that they have different topology on the unit circle.
Indeed, the symmetry groups of the unit circle for complex numbers and hy-
perbolic numbers are respectively SO(2) ∼ S1 ⊂ C and SO↑(1, 1) ∼ R ⊂ D.
The consequence of this difference in the topology of the unit circle is that
the superposition of states “doesn’t hold” in the case of hyperbolic quantum
mechanics. For instance, it is well known that in the classical Young’s two-
slit experiment, the intensity has a sinusoidal pattern. However, in the case
of hyperbolic quantum mechanics, intensity is proportional to the hyperbolic
cosines [4]. Therefore, the fringe pattern cannot be explained by the hyper-
bolic quantum mechanics. Nevertheless, in [2], it is mentioned that hyperbolic
quantum mechanics can be interesting as a new theory of probability waves
that can be developed in parallel with standard quantum mechanics [7].
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The bicomplex numbers are at the same time a generalization of complex
numbers C and of hyperbolic numbers D. Hence, the “bicomplex quantum
mechanics” is some generalization of the standard quantum mechanics and of
the hyperbolic quantum mechanics.

In this paper, we investigate the properties of the bicomplex Schrödinger
equation. In section 2, we introduce the bicomplex numbers and present the
conjugations and the bicomplex moduli of these numbers. Then, in section 3,
we recall some well known results on the standard Schrödinger equation. In
section 4 we derive the continuity equations, find the discrete symmetries and
introduce the idempotent basis for the bicomplex Schrödinger equation. Fi-
nally, in section 5, we introduce the three real moduli for bicomplex numbers
and give bicomplex Born formulas. A conclusion is made.

2. Bicomplex Numbers

The bicomplex numbers are defined as [8, 9, 10, 11]

T := {w0 + w1i1 + w2i2 + w3j| w0, w1, w2, w3 ∈ R}, (2.1)

with the product of imaginary units given in (1.1) i.e., i0 := 1 acts as identity,
i21 = i22 = −1, j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1.

(2.2)

Hence, the bicomplex numbers are commutative. We define the following two
subsets C(ik) ⊂ T for k = 1, 2, by C(ik) := {x+ yik|i2k = −1 and x, y ∈ R}.

It is also convenient to write the set of bicomplex numbers as

T = {z1 + z2i2| z1, z2 ∈ C(i1)}. (2.3)

In particular, if we put z1 = x and z2 = yi1 with x, y ∈ R, then we obtain
the subalgebra of hyperbolic numbers: D = {x + yj| j2 = 1, x, y ∈ R}. (Hy-
perbolic coordinates are naturally introduced in special relativity and serve
as space-time coordinates in the Lorentzian’s plane, where the non-invertible
coordinates correspond to the light cone, and the elements of the form eφj

represent “boosts”, [12].)
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2.1. Conjugates for Bicomplex Numbers

Complex conjugation plays an important role both for algebraic and geometric
properties of C, as well as in the standard quantum mechanics. For bicomplex
numbers, there are three possible conjugations. Let w ∈ T and z1, z2 ∈ C(i1)
such that w = z1 + z2i2. Then we define the three conjugations as:

w†1 = (z1 + z2i2)†1 := z1 + z2i2, (2.4a)

w†2 = (z1 + z2i2)†2 := z1 − z2i2, (2.4b)

w†3 = (z1 + z2i2)†3 := z1 − z2i2, (2.4c)

where zk is the standard complex conjugate of complex numbers zk ∈ C(i1). If
we say that the bicomplex number w = z1 + z2i2 = w0 +w1i1 +w2i2 +w3j has
the “signature” (+ + ++), then the conjugations of type 1,2 or 3 of w have,
respectively, the signatures (+−+−), (+ +−−) and (+−−+).

We can verify easily that each of these conjugates can be expressed in terms
of the two others, i.e. w†3 = (w†1)†2 = (w†2)†1 , etc. More precisely, under the
composition, the conjugates form the following abelian group:

◦ †0 †1 †2 †3
†0 †0 †1 †2 †3
†1 †1 †0 †3 †2
†2 †2 †3 †0 †1
†3 †3 †2 †1 †0

(2.5)

where w†0 := w∀w ∈ T.
The three kind of conjugations all have the standard properties of conjuga-

tions, i.e.

(s+ t)†k = s†k + t†k , (2.6)(
s†k

)†k = s, (2.7)

(s · t)†k = s†k · t†k . (2.8)
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for s, t ∈ T and k = 0, 1, 2, 3. The proofs of these properties are rather technical
and simple. Nevertheless, let us illustrate the proof for the last property in the
case of the conjugation of the first kind. Let s = z1 + z2i2 and t = z3 + z4i2
with z1, z2, z3, z4 ∈ C(i1), then

(s · t)†1 = [(z1z3 − z2z4) + (z1z4 + z2z3)i2]†1

= (z1z3 − z2z4) + (z1z4 + z2z3)i2

= (z1z3 − z2z4) + (z1z4 + z2z3)i2

= (z1 + z2i2) · (z3 + z4i2)

= s†1 · t†1 .

2.2. The Bicomplex Moduli

We know that the product of a standard complex number with his conjugate
gives the square of the Euclidean metric in R2. The analog of these, for bicom-
plex numbers, are the following. Let z1, z2 ∈ C(i1) and w = z1 +z2i2 ∈ T, then
we have that [11]:

|w|2i1 := w · w†2 = z2
1 + z2

2 ∈ C(i1), (2.9a)

|w|2i2 := w · w†1 =
(
|z1|2 − |z2|2

)
+ 2Re(z1z2)i2 ∈ C(i2), (2.9b)

|w|2j := w · w†3 =
(
|z1|2 + |z2|2

)
− 2Im(z1z2)j ∈ D, (2.9c)

where the subscript of the square modulus refers to the subalgebra C(i1),C(i2)
or D of T in which w is projected. Note that for z1, z2 ∈ C(i1) and w =
z1 + z2i2 ∈ T, we can define the usual norm of w as |w| =

√
|z1|2 + |z2|2 =√

Re(|w|2j ).

It is easy to verify that w · w
†2

|w|2i1
= 1. Hence, the inverse of w is given by

w−1 =
w†2

|w|2i1
. (2.10)

From this, we find that the set NC of zero divisors of T, called the null-cone,
is given by {z1 + z2i2| z2

1 + z2
2 = 0}, which can be rewritten as

NC = {z(i1 ± i2)| z ∈ C(i1)}. (2.11)
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2.3. Exponential Function

Contrary to quaternions, the exponential function is well defined on bicomplex
numbers and posses all the standard properties. Hence, for z1, z2 ∈ C(i1) and
w = z1 + z2i2 ∈ T, we have

ew = ez1+z2i2 = ez1ez2i2 = ez1(cos z2 + i2 sin z2), (2.12)

corresponding to hyper-polar coordinates. It is easy to see that this is a gener-
alization of the polar coordinates for the complex and the hyperbolic numbers.
Indeed, in particular for z1 = ln r ∈ R and z2 = θ ∈ R, we obtain the standard
complex polar coordinates. If z1 = ln ρ ∈ R and z2 = φi1 with φ ∈ R, then the
equation (2.12) becomes

ez1+z2i2 = ρeφj = ρ [cos(φi1) + i2 sin(φi1)]

= ρ [coshφ+ i2i1 sinhφ]

= ρ [coshφ+ j sinhφ] ,

(2.13)

which corresponds to the hyperbolic polar coordinates used in references [2, 4,
7, 9, 12, 13].

As in the standard case, the bicomplex number ew, is always invertible
∀w ∈ T. Moreover, we have these useful properties for all the conjugates:

(ew)†k = (ew†k ), k = 0, 1, 2, 3. (2.14)

3. The Standard Schrödinger’s Equation

Before going in the analysis of the bicomplex Schrödinger equation, let us first
review some well known results of the standard one-dimensional Schrödinger’s
equation:

i~ ∂tψ(x, t) +
~2

2m
∂2

xψ(x, t)− V (x, t)ψ(x, t) = 0 (3.1)

where
ψ : R2 → C and V : R2 → R.

First, if we set ψ = eα(x,t)+β(x,t)i with α, β : R2 → R, then it is well known
that the Schrödinger’s equation can be rewritten in a system of two differential
equations in terms of the functions α and β:
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−~ ∂tβ + ~2

2m

[
∂2

xα+ (∂xα)2 − (∂xβ)2
]
− V = 0, (3.2a)

∂tα + ~
2m

[
∂2

xβ + 2 ∂xα∂xβ
]

= 0. (3.2b)

The probability density P (ψ) to find a particle in the state ψ(x, t) is then
given by the Born’s formula:

P (ψ) = ψψ = e2α. (3.3)

One other very well known result of the standard Schrödinger’s equation is
the conservation of the probability current

∂t(ψψ) + ∇ · J(ψ) = 0, (3.4)

where

J(ψ) =
~

2mi
(ψ∂xψ − ψ∂xψ) (3.5a)

=
~
m

e2α∂xβ . (3.5b)

We note that equation (3.2b) and the conservation of the current probability
(3.4) coincide. Hence, by decomposing the standard Schrödinger’s equation into
his real and imaginary parts, one obtains two equations: (3.2a) corresponding to
an extended version of the Jacobi-Hamilton equation and (3.2b) corresponding
to the conservation of the probability current.

4. The Bicomplex Schrödinger Equation

Let us now consider an analog of the one-dimensional standard Schrödinger’s
equation over the bicomplex space functions:

i1~ ∂tψ(x, t) +
~2

2m
∂2

xψ(x, t)− V (x, t)ψ(x, t) = 0 (4.1)

where

ψ : R2 → T and V : R2 → R.

The choice of the imaginary unit i1 appearing explicitly in the bicomplex
Schrödinger equation is not arbitrary. In the case of hyperbolic quantum me-
chanics it has been shown that the choice of the hyperbolic imaginary unit
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j doesn’t yield the superposition principle [4]. Hence, in our case, we should
choose between the imaginary units i1 or i2. In principle there is no major
reason to prefer i1 instead of i2, however we will see later that imaginary unit
i1 is more appropriated for the decomposition of the bicomplex Schrödinger
equation into what we will call the idempotent basis.

We express the wave function ψ(x, t) into the hyper-polar coordinates as

ψ(x, t) = ez1(x,t)+z2(x,t)i2 , (4.2)

where

z1(x, t) = α(x, t) + β(x, t)i1, (4.3a)

z2(x, t) = γ(x, t) + δ(x, t)i1, (4.3b)

and α, β, γ and δ are real functions going from R2 → R. Hence, one can decom-
pose the bicomplex Schrödinger equation (4.1) into a system of four differential
equations in terms of the four real functions α, β, γ and δ:

−~ ∂tβ + ~2

2m

[
∂2

xα+ (∂xα)2 − (∂xβ)2 − (∂xγ)2 + (∂xδ)2
]
− V = 0, (4.4a)

∂tα + ~
2m

[
∂2

xβ + 2(∂xα∂xβ − ∂xγ ∂xδ)
]

= 0, (4.4b)

−∂tδ + ~
2m

[
∂2

xγ + 2(∂xα∂xγ − ∂xβ∂xδ)
]

= 0, (4.4c)

∂tγ + ~
2m

[
∂2

xδ + 2(∂xα∂xδ + ∂xβ ∂xγ)
]

= 0. (4.4d)

We remark that when γ → 0 and δ → 0 the system of equations (4.4) goes to
the system (3.2) of the standard Schrödinger’s equation.

4.1. The Bicomplex Continuity Equations

In this section, we derive the continuity equations for the bicomplex
Schrödinger equation. For that, we rewrite the bicomplex Schrödinger equation
under the four kind of conjugations:
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i1~ ∂tψ + ~2

2m ∂2
xψ − V ψ = 0, (4.5a)

−i1~ ∂tψ
†1 + ~2

2m ∂2
xψ

†1 − V ψ†1 = 0, (4.5b)

i1~ ∂tψ
†2 + ~2

2m ∂2
xψ

†2 − V ψ†2 = 0, (4.5c)

−i1~ ∂tψ
†3 + ~2

2m ∂3
xψ

†3 − V ψ†3 = 0. (4.5d)

Let us first consider equations (4.5a) and (4.5b). Multiplying (4.5a) by ψ†1 and
(4.5b) by ψ , and subtracting these two equations, one obtains

i1∂t(ψψ†1) +
~

2m
(ψ†1∂2

xψ − ψ∂2
xψ

†1) = 0, (4.6)

which can be rewritten into the continuity equation

∂t(ψψ†1) + ∇ · J1(ψ) = 0, (4.7)

where

J1(ψ) =
~

2mi1
(ψ†1∂xψ − ψ∂xψ

†1), (4.8a)

=
~
m

e2(α+γi2)∂x(β + δi2) . (4.8b)

These calculations can be done for all pair of equations in the set of equations
(4.5). However, one can construct a continuity equation only if the sign of
the imaginary unit i1, in front of each equation, are opposite into the pair of
equations that we consider. Indeed, it is not possible to obtain a continuity
equation from the pair of equations (4.5a) and (4.5c) or (4.5b) and (4.5d).
Therefore, we find three other continuity equations (for a total of four):

∂t(ψψ†3) +∇ · J2(ψ) = 0, (4.9)

J2(ψ) =
~

2mi1
(ψ†3∂xψ − ψ∂xψ

†3), (4.10a)

=
~
m

e2(α+δj)∂x(β − γj) . (4.10b)
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∂t(ψ†2ψ†1) +∇ · J3(ψ) = 0, (4.11)

J3(ψ) =
~

2mi1
(ψ†1∂xψ

†2 − ψ†2∂xψ
†1), (4.12a)

=
~
m

e2(α−δj)∂x(β + γj) . (4.12b)

∂t(ψ†2ψ†3) +∇ · J4(ψ) = 0, (4.13)

J4(ψ) =
~

2mi1
(ψ†3∂xψ

†2 − ψ†2∂xψ
†3), (4.14a)

=
~
m

e2(α−γi2)∂x(β − δi2) . (4.14b)

However, one can verify that these four continuity equations are an over de-
termined system of equations. Indeed, if we conjugate equation (4.7) by †2, we
obtain equation (4.13) where J4 = (J1)†2 . In the same way, if we conjugate
equation (4.9) by †1 we obtain equation (4.11) with J3 = (J2)†1 . Therefore,
we have two independent continuity equations. Let us choose J1 and J2 as the
“basis” for the currents.

The continuity equations (4.7) is in fact equivalent to the equations (4.4b)
and (4.4d). In the same way, the continuity equations (4.9) is equivalent to
the equations (4.4b) and (4.4c). Therefore, equation (4.4a) corresponds to an
extended version of the Hamilton-Jacobi equation of the standard case and
the system (4.4b), (4.4c) and (4.4d) are equivalent to the continuity equations
(4.7) and (4.9) expresed in terms of J1 and J2 only.

4.2. Discrete Symmetries of the Bicomplex Schrödinger
Equation

The system of equations (4.4) posses an 8-dimensional discrete group, leaving
the solution set of the system invariant. These discrete symmetry group is
given by



Advances in Applied Clifford Algebras 14, No. 2 (2004) 241

P̂0 = Id P̂1 =

{
γ → −γ

δ → −δ

P̂2 =

{
γ → −δi2

δ → γi2
P̂3 =

{
γ → δi2

δ → −γi2

P̂4 =

{
γ → δi1

δ → −γi1
P̂5 =

{
γ → −δi1

δ → γi1

P̂6 =

{
γ → γj

δ → δj
P̂7 =

{
γ → −γj

δ → −δj
.

(4.15)

Note that functions α(x, t) and β(x, t), of the bicomplex wave function ψ(x, t),
are not transformed under these discrete symmetry group.

Let us mention some remarks about these transformations. First, the group
of symmetry (4.15) is an abelian group with P̂ 2

n = Id for n = 0, 1, . . . , 7.
Second, the set given by {P̂0, P̂1, P̂2, P̂3} is a subgroup of the symmetry group
and is isomorphic to the group of conjugates (2.1) for the bicomplex numbers.
Finally, we remark that the discrete operators P̂4, P̂5, P̂6 and P̂7 act on an
arbitrary bicomplex number w exactly as the discrete operators P̂0, P̂1, P̂2 and
P̂3, respectively, i.e.

P̂n+4(w) = P̂n(w), for n = 0, 1, 2, 3 ∀w ∈ T. (4.16)

Hence we have in fact a “fundamental subgroup”, for the symmetry group,
given by {P̂0, P̂1, P̂2, P̂3}.

Let us now apply these symmetries on the system of equations equivalent
to (4.4), i.e. the system of equations consisting of (4.4a) and the two continuity
equations (4.7) and (4.9). We already know that equation (4.4a) is invariant
under the symmetries. Let us now look how the continuity equations (4.7)
and (4.9) are transformed under these symmetries. For that, we only have to
calculate the action of the symmetry operators on ψ (since J1 and J2 are
expressible in term of ψ). We find that

P̂1(ψ) = ψ†2 , P̂2(ψ) = ψ+, P̂3(ψ) = ψ−, (4.17)

where the functions ψ+ and ψ− are functions in the C(i1)-space given by

ψ± = ez1∓z2i1 = e(α±δ)+(β∓γ)i1 . (4.18)
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From these calculations, we find that P̂1 transforms equations (4.7) and (4.9)
into equations (4.13) and (4.11), respectively. Under the discrete symmetry P̂2,
the equations (4.7) and (4.9) are both transformed into the continuity equation

∂t(ψ+ψ+) +∇ · J(ψ+) = 0, (4.19)

where

J(ψ+) =
~

2mi1
(ψ+∂xψ+ − ψ+∂xψ+) (4.20a)

=
~
m

e2(α+δ)∂x (β − γ). (4.20b)

Finally, under P̂3, the equations (4.7) and (4.9) are both transformed into the
continuity equation

∂t(ψ−ψ−) +∇ · J(ψ−) = 0, (4.21)

J(ψ−) =
~

2mi1
(ψ−∂xψ− − ψ−∂xψ−) (4.22a)

=
~
m

e2(α−δ)∂x (β + γ). (4.22b)

Hence, under the symmetry operators, we have recover the two continuity
equations (4.13) and (4.11), dropped previously since respectively equivalent to
(4.7) and (4.9). Moreover, we have found two new continuity equations (4.19)
and (4.21), associated with two real currents J(ψ+) and J(ψ−).

Note that it is possible to express the bicomplex wave function ψ in terms
of ψ+ and ψ− by using what is called the idempotents basis. Indeed, for all
bicomplex numbers, one can pass from the real basis {1, i1, i2, j} to the complex
(in i1) basis {e1, e2}, where e1 = 1+j

2 , e2 = 1−j
2 (in fact e2 can be rewritten

in terms of e1, i.e. e2 = (e1)†1 = (e1)†2 , but e2 6= (e1)†3). The elements e1, e2

having the following properties:

(e1)2 = e1, (e2)2 = e2, e1e2 = 0. (4.23)

Every bicomplex number z1 + z2i2, z1, z2 ∈ C(i1), can be expressed in the
idempotent basis as

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2. (4.24)
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Moreover, the bicomplex exponential can be rewritten as follows

ez1+z2i2 = ez1−z2i1e1 + ez1+z2i1e2. (4.25)

In the same way, we can express the wave function in the idempotent basis
as

ψ = ψ+ e1 + ψ− e2. (4.26)

Hence, using the idempotent basis, we can rewrite the bicomplex Schrödinger
equation (4.1) in the form

(
i1~∂tψ+ +

~2

2m
∂2

xψ+ − V ψ+

)
e1 +

(
i1~∂tψ− +

~2

2m
∂2

xψ− − V ψ−

)
e2 = 0,

which can be decomposed into the following two standard Schrödinger’s equa-
tions (complex in i1):

i1~ ∂tψ± +
~2

2m
∂2

xψ± − V ψ± = 0. (4.27)

Associated with these equations, it is now obvious to see that we have the
continuity equations (4.19) and (4.21) written, respectively, in terms of the
real currents J(ψ±) given by (4.20) and (4.22).

5. The Bicomplex Born Formula

In the case of the standard Schrödinger’s equation (linear and homogeneous)
it is well known that the continuous symmetries of (3.1), acting on a solution
ψ only, are

ψ → λψ, λ ∈ C,
ψ → ψ + φ (φ another solution of the Schrödinger’s eq.), (5.1)

corresponding, respectively, to a dilation of the wave function and the superpo-
sition principle. In quantum mechanics dilation is used for the normalization of
the wave function and the superposition principle is one fundamental property.

In particular, the dilation can be expressed as a rotation of the wave function
when λ = eiθ. These particular symmetry plays an important role in quantum
mechanics since it is invariant under the Born’s formula.

For the bicomplex Schrödinger equation we still have the dilation (with
λ ∈ T) and the superposition principle (where ψ and φ are bicomplex functions)
as continuous symmetries, since equation (4.1) is linear and homogeneous.
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However, in addition, we have the discrete symmetries given in (4.15). In this
section, we want to study the bicomplex discrete symmetries for bicomplex
Born formulas.

5.1. Definitions of the Real Moduli

In order to obtain some bicomplex Born formula from our bicomplex wave
function ψ(x, t), let us define the following three real moduli (see [10]):
1) For s, t ∈ T, we define the first modulus as | · |1 := || · |i1 |. This modulus

has the following properties:
a) | · |1 : T → R,
b) |s|1 ≥ 0 with |s|1 = 0 iff s ∈ NC,
c) |s · t|1 = |s|1 · |t|1.

From this definition, we can rewrite this real pseudo-modulus in a much
practical point of view as

|w|1 = |z2
1 + z2

2 |1/2, (5.2)

for w = z1 + z2i2 with z1, z2 ∈ C(i1). Moreover, it is also useful to express
| · |1, in terms of our three bicomplex conjugates, i.e.

|w|1 = 4
√
ww†1w†2w†3 . (5.3)

2) For s, t ∈ T, we define the second modulus as | · |2 := || · |i2 |. This modulus
has the same properties as | · |1. Indeed we can rewrite |w|2 as

|w|2 = |z2
1 + z2

2 |1/2, (5.4)

where w = z1 + z2i1 with z1, z2 ∈ C(i2). Hence, the first and the second
pseudo-modulus are the same.

3) For s, t ∈ T, we define the third modulus as | · |3 := || · |j|. This modulus
has the following properties:
a) | · |3 : T → R,
b) |s|3 ≥ 0 with |s|3 = 0 iff s = 0,
c) |s+ t|3 ≤ |s|3 + |t|3,
d) |s · t|3 ≤

√
2|s|3 · |t|3.

We note that
(i) |w|j = |z1 − z2i1|e1 + |z1 + z2i1|e2 ∈ D ∀w = z1 + z2i2 ∈ T,
(ii) |s · t|j = |s|j|t|j ∀s, t ∈ T.
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From this definition, we can rewrite the modulus | · |3 as

|w|3 =
√
|z1|2 + |z2|2, (5.5)

for w = z1 + z2i2 with z1, z2 ∈ C(i1). Hence, we see that in fact | · |3 is
simply the Euclidean metric of R4, i.e.

|w|3 = |w| =
√

Re(|w|2j ). (5.6)

5.2. Invariance Under the Discrete Symmetries for the Real Mod-
uli

Let us first calculate the real moduli for the bicomplex wave function ψ(x, t).
We obtain the following “bicomplex Born formulas”:

|ψ|21 = |ψ|22 = e2α, (5.7)

|ψ|23 = e2α cosh(2δ) = e2α

(
1 +

(2δ)2

2!
+

(2δ)4

4!
+ · · ·

)
. (5.8)

For |ψ|21, we find the same result as in the standard case (3.3) and |ψ|23 is some
kind of hyperbolic perturbation of the standard case when δ(x, t) is small.

Let us now consider the invariance of |ψ|2k (k = 1, 2, 3) under the discrete
symmetries. To illustrate that, we first consider the operator P̂1. A new wave
function ψ̃ is obtained by applying the symmetry operator P̂1 on ψ. Then by
calculating the result on |ψ̃|21, we find

|ψ̃|21 := |P̂1ψ|21 =
√

(P̂1ψ)(P̂1ψ)†1(P̂1ψ)†2(P̂1ψ)†3

=
√
ψ†2ψ†3ψψ†1

= |ψ|21 = e2α.

(5.9)

Therefore, |ψ|21 is invariant under P̂1. Performing these calculations for all the
real moduli, under all the discrete symmetries, we obtain

|P̂1ψ|2k = |ψ|2k =

{
e2α if k = 1, 2
e2α cosh(2δ) if k = 3

(5.10)

and
|P̂2ψ|2k = e2δ|ψ|2k = e2(α+δ),

|P̂3ψ|2k = e−2δ|ψ|2k = e2(α−δ) (5.11)
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for k = 1, 2, 3.
It is now easy to prove that the bicomplex Born formulas will be preserved

under all our discrete symmetries (4.15) if and only if the wave function ψ has
the form

ψ(x, t) = eα(x,t)+β(x,t)i1+γ(x,t)i2 , (5.12)

i.e. if and only if δ(x, t) = 0. Moreover, we have the following result for | · |23:

Theorem 1. Let ψ be a bicomplex wave function given by ψ(x, t) =
eα(x,t)+β(x,t)i1+γ(x,t)i2+δ(x,t)j = ψ+(x, t) e1 + ψ−(x, t) e2. Then,

|ψ(x, t)|23 =
|ψ+|2 + |ψ−|2

2
. (5.13)

In particular, if the standard wave functions ψ+(x, t) and ψ−(x, t) are normal-
ized we have that

|ψ(x, t)|23 =
P1 + P2

2
∈ [0, 1]

where P1 and P2 are respectively the density probability of ψ+(x, t) and ψ−(x, t).

Proof. The proof of this theorem is obtained using the following analog of the
Pythagoras Theorem for bicomplex numbers (see [8]):

|z1 + z2i2|2 =
∣∣∣∣z1 − z2i1√

2

∣∣∣∣2 +
∣∣∣∣z1 + z2i1√

2

∣∣∣∣2 ∀z1 + z2i2 ∈ T, (5.14)

to the bicomplex wave function ψ(x, t). 2

We are now ready to summarize our results with this following corollary:

Corollary 1. Let ψ be a bicomplex wave function given by ψ(x, t) =
eα(x,t)+β(x,t)i1+γ(x,t)i2 = ψ+(x, t) e1 + ψ−(x, t) e2. Then,

|ψ|2 = |ψ|21 = |ψ|22 = |ψ|23 =
√
ψψ†1ψ†2ψ†3 =

|ψ+|2 + |ψ−|2

2
= e2α, (5.15)

where |ψ|2 gives the standard Born’s formula and is invariant under all the
discrete symmetries (4.15) of the bicomplex Schrödinger equation.

The fact that hyperbolic angle of the exponential is zero in ψ, i.e. we have
to consider δ(x, t) = 0 in Corollary 1, do not means that hyperbolic part of the
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wave function do not play any role. Indeed, the wave function can be explicitly
rewritten as

ψ(x, t) = eα(x,t)+β(x,t)i1+γ(x,t)i2

= eα (cosβ cos γ + i1 sinβ cos γ + i2 cosβ sin γ + j sinβ sin γ) .

Hence, the wave function considered in Corollary 1 is really a bicomplex func-
tion.

6. Conclusion

In this paper we have introduced the bicomplex numbers and some bicomplex
conjugates and moduli associated with these numbers. Then we have study the
bicomplex Schrödinger equation where we have found the bicomplex continu-
ity equations. Moreover we have shown that, under some discrete symmetries
of the system of four equations of the bicomplex Schrödinger equation, the
bicomplex continuity equations can be transformed into real continuity equa-
tions associated with the currents J(ψ±). These two real currents are in fact
associated with the bicomplex Schrödinger equation written in terms of the
idempotent basis. Finally, we have shown that it is possible to obtain some
specific generalization of the Born’s formula for a class of wave functions with
a null hyperbolic angle. This class of wave functions are completely invariant
under all the discrete symmetries founded.
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248 Bicomplex Quantum Mechanics: I. The Generalized ... D. Rochon & S. Tremblay

References

[1] Adler S.L. , “Quaternionic Quantum Mechanics and Quantum Fields”, Oxford
University Press, New York (1995).

[2] Khrennikov A., Adv. App. Cliff. Alg. 13 No. 1, 1 (2003).
[3] Horwitz L.P., Found. Phys. 26, No. 6, 851 (1996).
[4] Kocik J., Internat. J. Theoret. Phys. 38, No. 8, 2221 (1999).
[5] Finkelstein F.G. et al., J. Math Phys. 3 (1962).
[6] Frobenius F.G., Jo. Reine Angew. Mat. 84, 1 (1878).
[7] Khrennikov A., Ann. Phys. (8) 12, No. 10, 575 (2003).
[8] Price G.B., “An Introduction to Multicomplex Spaces and Functions”, Marcel

Dekker Inc., New York (1991).
[9] Rochon D., Master thesis, Université de Montréal (1997).
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