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On Factorization of Bicomplex
Meromorphic Functions

K.S. Charak and D. Rochon

Abstract. In this paper the factorization theory of meromorphic functions
of one complex variable is promoted to bicomplex meromorphic functions.
Many results of one complex variable case are seen to hold in bicomplex
case, and it is found that there are results for meromorphic functions of one
complex variable which are not true for bicomplex meromorphic functions.
In particular, we show that for any bicomplex transcendental meromorphic
function F , there exists a bicomplex meromorphic function G such that GF
is prime even if the set:

{a ∈ T : F (w) + aφ(w) is not prime}
is empty or of cardinality ℵ1 for any non-constant fractional linear bicomplex
function φ. Moreover, as specific application, we obtain six additional possible
forms of factorization of the complex cosine cos z in the bicomplex space.
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1. Introduction

The factorization theory of meromorphic functions of one complex variable is to
study how a given meromorphic function can be factorized into other simpler mero-
morphic functions in the sense of composition. In number theory, every natural
number can be factorized as a product of prime numbers. Therefore, prime num-
bers serve as building blocks of natural numbers and the theory of prime numbers
is one of the main subarea of number theory. In our situation, we also have the
so-called prime functions which play a similar role in the factorization theory of
meromorphic functions as prime numbers do in number theory. More specifically,
factorization theory of meromorphic functions essentially deals with the primeness,
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pseudo-primeness and unique factorizability of a meromorphic function. We start
with the following concepts.

Definition 1.1. Let F be a meromorphic function. Then an expression

F (z) = f(g(z)) (1.1)

where f is meromorphic and g is entire (g may be meromorphic when f is a rational
function) is called a factorization of F with f and g as its left and right factors
respectively. F is said to be non-factorizable or prime if for every representation
of F of the form (1.1) we have that either f or g is linear. If every representation
of F of the form (1.1) implies that f is rational or g is a polynomial (f is linear
whenever g is transcendental, g is linear whenever f is transcendental), we say
that F is pseudo-prime (left-prime, right-prime). If the factors are restricted to
entire functions, the factorization is said to be in entire sense and we have the
corresponding concepts of primeness in entire sense (called E-primeness), pseudo-
primeness in entire sense (called E-pseudo-primeness) etc.

The first example of prime function is F (z) = exp(z)+z given by Rosenbloom
[23] who gave the definition of prime transcendental entire function by considering
entire factors only, and asserted without proof that the function F (z) = z+exp(z)
is prime. In 1968, F. Gross [7] gave a complete proof of this assertion and ex-
tended the study of primeness to meromorphic functions and gave Definition 1.1.
No systematic theory has actually been developed to handle the problems of fac-
torization of transcendental meromorphic functions. However, recently, T.W. Ng
[9, 10, 11, 12] proved some results which of course can solve some factorization
problems in a systematic way. He introduced the methods from the Theory of
Complex Analytic Sets and local holomorphic dynamics to solve some factoriza-
tion problems. Classical function theory and the Nevanlinna Value Distribution
theory are the main tools used in factorization theory of meromorphic functions.
Most of the classes of functions which have been studied are concerned with the
following one for several factors: (1) Growth of the function, (2) Distribution of
zeros, (3) Periodicity, (4) Fixed-points, (5) Solutions of linear differential equa-
tions. For complete details on factorization theory of meromorphic functions one
can refer to the books of C.T. Chuang and C.C. Yang [3], and F. Gross [5].

The main purpose of the present paper is to try to extend and promote
the research on Factorization theory of meromorphic functions in one complex
variable to two complex variables via Bicomplex Function Theory [14, 15, 16,
18]. In our study of factorization theory of bicomplex meromorphic functions,
the idempotent representation of bicomplex meromorphic functions plays a vital
role since the parallel definitions of factorization of meromorphic functions of one
complex variable do not work. It is found that many results from one variable
theory hold in bicomplex situation whereas some fail to hold, and this is the point
of difference between the two situations and so makes sense to investigate. In
particular, we show that for any bicomplex transcendental meromorphic function
F , there exists a bicomplex meromorphic function G such that GF is prime even
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if the set:
{a ∈ T : F (w) + aφ(w) is not prime}

is empty or of cardinality ℵ1 for any non-constant fractional linear bicomplex
function φ. Moreover, as specific application, we obtain six additional possible
forms of factorization of the complex cosine cos z in the bicomplex space.

2. Preliminaries

2.1. Bicomplex numbers

Bicomplex numbers are defined as

T := {z1 + z2i2 | z1, z2 ∈ C(i1)} (2.1)
where the imaginary units i1, i2 and j are governed by the rules: i21 = i22 = −1,
j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1.

(2.2)

Note that we define C(ik) := {x+ yik | i2k = −1 and x, y ∈ R} for k = 1, 2. Hence,
it is easy to see that the multiplication of two bicomplex numbers is commutative.
In fact, the bicomplex numbers

T ∼= ClC(1, 0) ∼= ClC(0, 1)

are unique among the complex Clifford algebras in that they are commutative but
not division algebra. It is also convenient to write the set of bicomplex numbers as

T := {w0 + w1i1 + w2i2 + w3j | w0, w1, w2, w3 ∈ R}. (2.3)

In particular, in equation (2.1), if we put z1 = x and z2 = yi1 with x, y ∈ R,
then we obtain the following subalgebra of hyperbolic numbers, also called duplex
numbers (see, e.g., [20, 26]):

D := {x+ yj | j2 = 1, x, y ∈ R} ∼= ClR(0, 1).

Complex conjugation plays an important role both for algebraic and geomet-
ric properties of C. For bicomplex numbers, there are three possible conjugations.
Let w ∈ T and z1, z2 ∈ C(i1) such that w = z1 + z2i2. Then we define the three
conjugations as:

w†1 = (z1 + z2i2)†1 := z1 + z2i2, (2.4a)

w†2 = (z1 + z2i2)†2 := z1 − z2i2, (2.4b)

w†3 = (z1 + z2i2)†3 := z1 − z2i2, (2.4c)

where zk is the standard complex conjugate of complex numbers zk ∈ C(i1). If
we say that the bicomplex number w = z1 + z2i2 = w0 + w1i1 + w2i2 + w3j
has the “signature” (+ + ++), then the conjugations of type 1,2 or 3 of w have,
respectively, the signatures (+ − +−), (+ + −−) and (+ − −+). We can verify
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easily that the composition of the conjugates gives the four-dimensional abelian
Klein group:

◦ †0 †1 †2 †3
†0 †0 †1 †2 †3
†1 †1 †0 †3 †2
†2 †2 †3 †0 †1
†3 †3 †2 †1 †0

(2.5)

where w†0 := w ∀w ∈ T.
The three kinds of conjugation all have some of the standard properties of

conjugations, such as:

(s+ t)†k = s†k + t†k , (2.6)
(
s†k
)†k = s, (2.7)

(s · t)†k = s†k · t†k , (2.8)

for s, t ∈ T and k = 0, 1, 2, 3.

We know that the product of a standard complex number with its conjugate
gives the square of the Euclidean metric in R

2. The analogs of this, for bicomplex
numbers, are the following. Let z1, z2 ∈ C(i1) and w = z1 +z2i2 ∈ T, then we have
that [20]:

|w|2i1 := w · w†2 = z2
1 + z2

2 ∈ C(i1), (2.9a)

|w|2i2 := w · w†1 =
(
|z1|2 − |z2|2

)
+ 2Re(z1z2)i2 ∈ C(i2), (2.9b)

|w|2j := w · w†3 =
(
|z1|2 + |z2|2

)
− 2Im(z1z2)j ∈ D, (2.9c)

where the subscript of the square modulus refers to the subalgebra C(i1),C(i2) or
D of T in which w is projected. Note that for z1, z2 ∈ C(i1) and w = z1 +z2i2 ∈ T,
we can define the usual (Euclidean in R

4) norm of w as |w| =
√
|z1|2 + |z2|2 =√

Re(|w|2j ).

It is easy to verify that w · w
†2

|w|2i1
= 1. Hence, the inverse of w is given by

w−1 =
w†2

|w|2i1
. (2.10)

From this, we find that the set NC of zero divisors of T, called the null-cone, is
given by {z1 + z2i2 | z2

1 + z2
2 = 0}, which can be rewritten as

NC = {z(i1 ± i2)| z ∈ C(i1)}. (2.11)
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2.2. Bicomplex holomorphic functions

It is also possible to define differentiability of a function at a point of T:

Definition 2.1. Let U be an open set of T and w0 ∈ U . Then, f : U ⊆ T −→ T is
said to be T-differentiable at w0 with derivative equal to f ′(w0) ∈ T if

lim
w→w0

(w−w0 inv.)

f(w) − f(w0)
w − w0

= f ′(w0).

We also say that the function f is T-holomorphic on an open set U if and
only if f is T-differentiable at each point of U.

Using w = z1+z2i2, a bicomplex number w can be seen as an element (z1, z2)
of C

2, so a function f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2 of T can be seen as a
mapping f(z1, z2) = (f1(z1, z2), f2(z1, z2)) of C

2. Here we have a characterization
of such mappings:

Theorem 2.2. Let U be an open set and f : U ⊆ T −→ T such that f ∈ C1(U),
and let f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2. Then f is T-holomorphic on U if
and only if

f1 and f2 are holomorphic in z1 and z2,

and
∂f1
∂z1

=
∂f2
∂z2

and
∂f2
∂z1

= −∂f1
∂z2

on U.

Moreover, f ′ = ∂f1
∂z1

+ ∂f2
∂z1

i2 and f ′(w) is invertible if and only if detJf (w) �= 0.

This theorem can be obtained from results in [14] and [19]. Moreover, by the
Hartogs theorem [25], it is possible to show that “f ∈ C1(U)” can be dropped from
the hypotheses. Hence, it is natural to define the corresponding class of mappings
for C

2:

Definition 2.3. The class of T-holomorphic mappings on a open set U ⊆ C
2 is

defined as follows:

TH(U) :={f :U ⊆ C
2 −→ C

2|f ∈ H(U) and
∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

= −∂f1
∂z2

on U}.

It is the subclass of holomorphic mappings of C
2 satisfying the complexified

Cauchy-Riemann equations.

We remark that f ∈ TH(U) in terms of C
2 if and only if f is T-differentiable

on U . It is also important to know that every bicomplex number z1 + z2i2 has the
following unique idempotent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2. (2.12)

where e1 = 1+j
2 and e2 = 1−j

2 . This representation is very useful because: addition,
multiplication and division can be done term-by-term. It is also easy to verify the
following characterization of the non-invertible elements.
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Proposition 2.4. An element w = z1 + z2i2 will be in the null-cone if and only if
z1 − z2i1 = 0 or z1 + z2i1 = 0.

The notion of holomorphicity can also be seen with this kind of notation.
For this we need to define the projections P1, P2 : T −→ C(i1) as P1(z1 + z2i2) =
z1 − z2i1 and P2(z1 + z2i2) = z1 + z2i1.

Definition 2.5. We say that X ⊆ T is a T-cartesian set determined by X1 and X2

if X = X1×eX2 := {z1 +z2i2 ∈ T : z1 +z2i2 = w1e1 +w2e2, (w1, w2) ∈ X1×X2}.

Now, it is possible to state the following striking theorems [14]:

Theorem 2.6. Let X1 and X2 be open sets in C(i1). If fe1 : X1 −→ C(i1) and
fe2 : X2 −→ C(i1) are holomorphic functions of C(i1) on X1 and X2 respectively,
then the function f : X1 ×e X2 −→ T defined as

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X1 ×e X2

is T-holomorphic on the open set X1 ×e X2 and

f ′(z1 + z2i2) = f ′
e1(z1 − z2i1)e1 + f ′

e2(z1 + z2i1)e2

∀ z1 + z2i2 ∈ X1 ×e X2.

Theorem 2.7. Let X be an open set in T, and let f : X −→ T be a T-holomorphic
function on X. Then there exist holomorphic functions fe1 : X1 −→ C(i1) and
fe2 : X2 −→ C(i1) with X1 = P1(X) and X2 = P2(X), such that:

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X.

3. Bicomplex meromorphic functions

3.1. Basic definitions

In the complex plane, it is well known (see [24]) that a function f is meromorphic
in an open set U if and only if f is a quotient g/h of two functions which are
holomorphic in U where h is not identically zero in any component of U . Based
on this definition we define a bicomplex meromorphic function as follows.

Definition 3.1. A function f is said to be bicomplex meromorphic in an open set
X ⊂ T if f is a quotient g/h of two functions which are bicomplex holomorphic in
X where h is not identically in the null-cone in any component of X .

Theorem 3.2. Let f : X −→ T be a bicomplex meromorphic function on the open
set X ⊂ T. Then there exist meromorphic functions fe1 : X1 −→ C(i1) and
fe2 : X2 −→ C(i1) with X1 = P1(X) and X2 = P2(X), such that:

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X.
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Proof. Let f : X −→ T be a bicomplex meromorphic function on X. Then f is a
quotient g/h of two functions which are bicomplex holomorphic in X where h is
not identically in the null-cone in any component of X. Therefore, from Theorem
2.7 and Proposition 2.4, there exist holomorphic functions ge1, he1 : X1 −→ C(i1)
and ge2, he2 : X2 −→ C(i1) with X1 = P1(X) and X2 = P2(X), such that:

g(z1 + z2i2) = ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)e2

and
h(z1 + z2i2) = he1(z1 − z2i1)e1 + he2(z1 + z2i1)e2

∀ z1 + z2i2 ∈ X where hei is not identically zero in any component of Xi for
i = 1, 2. Hence,

f(z1 + z2i2) =
ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)e2

he1(z1 − z2i1)e1 + he2(z1 + z2i1)e2

=
ge1(z1 − z2i1)
he1(z1 − z2i1)

e1 +
ge2(z1 + z2i1)
he2(z1 + z2i1)

e2

= fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2

where fei is meromorphic in Xi for i=1,2. �

Definition 3.3. Let f : X −→ T be a bicomplex meromorphic function on the open
set X ⊂ T. We will say that w = (z1 − z2i1)e1 + (z1 + z2i1)e2 ∈ X is a (strong)
pole for the bicomplex meromorphic function

F (w) = Fe1(z1 − z2i1)e1 + Fe1(z1 + z2i1)e2

if z1−z2i1 ∈ P1(X) (and) or z1+z2i1 ∈ P2(X) are poles for Fe1 : P1(X) −→ C(i1)
and Fe2 : P2(X) −→ C(i1) respectively.

Remark 3.4. Poles of bicomplex meromorphic functions are not isolated singular-
ities.

It is also easy to obtain the following characterization of poles.

Proposition 3.5. Let f : X −→ T be a bicomplex meromorphic function on the
open set X ⊂ T. If w0 ∈ X then w0 is a pole of f if and only if

lim
w→w0

|f(w)| =∞.

Definition 3.6. The order of a bicomplex meromorphic function

F (w) = Fe1(z1 − z2i1)e1 + Fe2(z1 + z2i1)e2

is defined as
ρ(F ) = max{ρ(Fe1), ρ(Fe2)}.

Finally, to avoid any confusion, we will say that a function f : T −→ T is a
transcendental bicomplex meromorphic function on T if fei : C(i1) −→ C(i1) is a
transcendental meromorphic function for i = 1, 2.
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3.2. Factorization of bicomplex meromorphic functions

In this subsection we introduce the bicomplex version of the factorization of mero-
morphic functions in the plane.

Definition 3.7. Let F be a bicomplex meromorphic function on T. Then F is said
to have f and g as left and right factors respectively if Fei has fei and gei as left
and right factors respectively for i = 1, 2, i.e., fei is meromorphic and gei is entire
(gei may be meromorphic when fei is rational) for i = 1, 2.

Remark 3.8. If F has f and g as left and right factors respectively then we always
have the following factorization: F (w) = f(g(w)).

Proof. Let Fei = fei(gei(z)) on C(i1) for i = 1, 2. Then

f(g(w)) = f(ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)e2)

= fe1(ge1(z1 − z2i1))e1 + fe2(ge2(z1 + z2i1))e2)

= Fe1(z1 − z2i1)e1 + Fe2(z1 + z2i1)e2

= F (w). �

Theorem 3.9. Let F (w) be a bicomplex meromorphic function on T. If F (w) =
f(g(w)) where f is bicomplex meromorphic and g is bicomplex entire (g may be
bicomplex meromorphic when f is bicomplex rational) then F has f and g as left
and right factors respectively.

Proof. From Theorem 3.2,

F (z1 + z2i2) = Fe1(z1 − z2i1)e1 + Fe2(z1 + z2i1)e2 on T

where Fei is meromorphic on C(i1) for i = 1, 2. Moreover, ∀w ∈ T

F (w) = f(g(w))
= f(ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)e2)
= fe1(ge1(z1 − z2i1))e1 + fe2(ge2(z1 + z2i1))e2.

Hence, Fei = fei(gei(z)) on C(i1) where fei is meromorphic and gei is entire (gei

may be meromorphic when fei is rational) for i = 1, 2. �

Proposition 3.10. The converse of Theorem 3.9 is false.

Proof. Supposed that Fei has fei and gei as left and right factors respectively. In
that case, the functions F = f(g(w)). However, in the situation where you have
a rational function (with poles) for fe1 with a meromorphic function (with poles)
for ge1 and an entire function for fe2 and ge2 then the complete function g will be
bicomplex meromorphic (with poles) where f is not bicomplex rational. �

It is now possible to define the concept of prime (pseudo-prime) function in
terms of the idempotent representation.
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Definition 3.11. A bicomplex meromorphic function

F (z1 + z2i2) = Fe1(z1 − z2i1)e1 + Fe2(z1 + z2i1)e2 on T

is said prime (pseudo-prime), if the meromorphic functions Fe1 and Fe2 are prime
(pseudo-prime).

Remark 3.12. All bicomplex polynomials are pseudo-prime, and bicomplex poly-
nomials of prime degree are prime.

Theorem 3.13. If every factorization of a bicomplex meromorphic function F (w) =
f(g(w)) into left and right factors implies that f or g is bicomplex linear (bicomplex
polynomial or f is rational) then F is prime (pseudo-prime).

Proof. First, we note that a bicomplex meromorphic function h(z1 + z2i2) =
he1(z1 − z2i1)e1 + he2(z1 + z2i1)e2 is bicomplex linear (bicomplex polynomial)
if and only if hei is linear (polynomial) for i = 1, 2. Now, since every factorization
of F (w) of the form f(g(w)) implies that either f or g is bicomplex linear (bicom-
plex polynomial or f is bicomplex rational), then fei or gei is linear (polynomial or
fei is rational) for i = 1, 2. This further implies that Fei is prime (pseudo-prime)
for i = 1, 2. �

Proposition 3.14. The converse of Theorem 3.13 is false.

Proof. Supposed that every factorization of Fei(w) = fei(gei(w)) into left and right
factors implies that fei or gei is polynomial or fei is rational for i = 1, 2. In that
case, the function F is supposed to be pseudo-prime but in the situation where
you have a polynomial for fe1 and a rational function for fe2 then the complete
function f in the bicomplex space will be neither a bicomplexe polynomial nor a
bicomplex rational function. �

In 1973, Gross, Osgoods and Yang posed the following problem (see [6]):
Given any transcendental entire function f , does there exist a meromorphic func-
tion g such that fg is prime? In [13], Noda gave an affirmative answer to the above
problem and in [8] Qiao and Yongxing extended this to meromorphic functions.
The next theorem will show that the same result is also true in the bicomplex case.

Theorem 3.15. Let F be any bicomplex transcendental meromorphic function, then
there exists a bicomplex meromorphic function G such that GF is prime.

Proof. Let F (w) = Fe1(z1 − z2i1)e1 + Fe1(z1 + z2i1)e2 be any bicomplex tran-
scendental meromorphic function. Therefore, Fei is a transcendental meromorphic
function for i = 1, 2. Hence, there exists a meromorphic function Gei such that
FeiGei is prime for i = 1, 2 (see Qiao and Yongxing [8]). Now, from Definition
3.11, FG is prime when G is defined as follows:

G(w) := Ge1(z1 − z2i1)e1 +Ge1(z1 + z2i1)e2. �

Theorem 3.16. A bicomplex transcendental entire function of finite order such that
F (T) ⊂ T

−1 is pseudo-prime.
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Proof. Let F be a bicomplex transcendental entire function such that F (T) ⊂ T
−1.

Since ρ(F ) is finite, ρ(Fei) is also finite for i = 1, 2. Moreover, since F (T) is always
invertible, it follows from Proposition 2.4 that the entire function Fei has no zeros
for i = 1, 2. Thus by a result of Gross (see [5], p. 215, Theorem 1) it follows that
each Fei is pseudo-prime. Hence by Definition 3.11, F is pseudo-prime. �

Example. exp(z1 + z2i2) is pseudo-prime.

In [5] Fred Gross conjectured that if f and g are non-linear entire functions,
at least one of them transcendental, then the composite function f ◦g has infinitely
many fix-points. Its factorization version is: if P is a polynomial and if α is a non-
constant entire function, then the function F (z) = P (z) exp(α(z)) + z is prime.
Bergweiler [2] proved this long pending conjecture in its general form as: if P
and Q are polynomials and α is an entire function such that Q and α are non-
constant, and P , Q and α do not have a non-linear common right factor, then
P (z) exp(α(z)) + Q(z) is prime, and conversely also. The bicomplex analogue of
Bergweiler’s result also holds with stronger hypotheses.

Definition 3.17. Let F (w) = Fe1(z1− z2i1)e1 +Fe1(z1 + z2i1)e2 : D −→ T be any
bicomplex function. The function F is said to be strongly non-constant (non-linear)
on D if Fei is non-constant (non-linear) on Pi(D) for i = 1, 2.

Theorem 3.18. Let P and Q be bicomplex polynomials and α be a bicomplex entire
function. Suppose that Q and α are strongly non-constant for i = 1, 2 and let
F (w) = P (w) exp(α(w)) +Q(w). Then F is prime if and only if P , Q, and α do
not have strongly non-linear bicomplex common right factor.

Proof. Let

P (z1 + z2i2) = Pe1(z1 − z2i1)e1 + Pe2(z1 + z2i1)e2

Q(z1 + z2i2) = Qe1(z1 − z2i1)e1 +Qe2(z1 + z2i1)e2

α(z1 + z2i2) = αe1(z1 − z2i1)e1 + αe2(z1 + z2i1)e2.

Then it follows that

g(z1 + z2i2) = ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)

is a strongly non-linear bicomplex common right factor of P , Q, and α if and only
if gei is a non-linear common right factor of Pei, Qei, and αei for i = 1, 2.

Now since

f ◦ g = (fe1 ◦ ge1)e1 + (fe2 ◦ ge2)e2

and
f + g = (fe1 + ge1)e1 + (fe2 + ge2)e2,
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we have

F (w) = P (w) exp(α(w)) +Q(w)

= (Pe1(w1)e1 + Pe2(w2)e2)(eαe1(w1)e1 + eαe2(w2)e2)

+ (Qe1(w1)e1 +Qe2(w2)e2)

= (Pe1(w1)eαe1(w1) +Qe1(w1))e1 + (Pe2(w2)eαe2(w2) +Qe2(w2))e2

where w = z1 + z2i2, w1 = z1 − z2i1 and w2 = z1 + z2i1. Writing F (w) =
Fe1(w1)e1 + Fe2(w2)e2 we find from above that

Fei(wi) = Pei(wi)eαei(wi) +Qei(wi)

which by Bergweiler’s result (see [2]) is prime if and only if Pei, Qei, and αei do not
have a non-linear common right factor for i = 1, 2. Therefore, since an arbitrary
bicomplex function f(w) is strongly non-constant if and only if P1(f(w)) and
P2(f(w)) is non-constant, we obtain from our hypotheses and Theorem 3.13 that
F (w) = P (w) exp(α(w)) +Q(w) is prime if and only if P , Q, and α do not have
strongly non-linear bicomplex common right factor. �

Remark 3.19. As for one complex variable, the Theorem 3.18 implies that if f
and g are strongly non-linear bicomplex entire functions, at least one of them
transcendental, then the composite function f ◦ g has infinitely many fix-points.

In [1], Baoqin and Guodong proved the following: if f is any transcendental
meromorphic function, then for any non-constant fractional linear function φ, the
set

{a ∈ C : f(z) + aφ(z) is not prime}
is at most countable. We will now show that bicomplex version of this result is
false.

Theorem 3.20. Let f be any bicomplex transcendental meromorphic function, then
for any non-constant fractional linear bicomplex function φ, the set

{a ∈ T : f(w) + aφ(w) is not prime}
is empty or of cardinality ℵ1.

Proof. For w = z1 + z2i2, w1 = z1 − z2i1, and w2 = z1 + z2i1 writing

f(w) = fe1(w1)e1 + fe2(w2)e2

φ(w) = φe1(w1)e1 + φe2(w2)e2,

where fei is transcendental meromorphic and φei is fractional linear for i = 1, 2
where φei is non-constant for i = 1 or i = 2. Without loss of generality, let φe1 be
non-constant. Then, the set

{α ∈ C(i1) : fe1(z) + αφe1(z) is not prime}
is at most countable.
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Now by taking a = ae1e1 + ae2e2 and since

f(w) + aφ(w) = (fe1(w1) + ae1φe1(w1))e1 + (fe2(w2) + ae2φe2(w2))e2,

it follows from Definition 3.11 that:

f(w) + aφ(w) is not prime ⇔ fe1(z) + ae1φe1(z) is not prime
or fe2(z) + ae2φe2(z) is not prime.

Since |{α ∈ C(i1) : fe2(z) + αφe2(z) is prime or not}| = |C(i1)| = ℵ1 then

{a ∈ T : f(w) + aφ(w) is not prime}
is also of cardinality ℵ1 except if the set is empty. �

Finally, by using idempotent representations of bicomplex numbers and bi-
complex functions, and by using Definition 3.11 and Theorem 4.11 in [3] we have
the following result.

Theorem 3.21. Every bicomplex meromorphic solution of an nth-order ordinary
bicomplex differential equation with bicomplex rational functions as coefficients is
pseudo-prime.

Example. cos(z1 + z2i2) is pseudo-prime since it satisfies the ordinary bicomplex
linear differential equation y′′(w) − y(w) = 0.

Theorem 3.22. Let F (z1 + z2i2) = cos(z1 + z2i2), the possible forms of the factor-
ization of F = f ◦ g are as follows:

f(ζ1 + ζ2i2) = fe1(ζ1 − ζ2i1)e1 + fe2(ζ1 + ζ2i1)e2

and
g(z1 + z2i2) = ge1(z1 − z2i1)e1 + ge2(z1 + z2i1)e2

where the couple (fei(z), gei(z)) is chosen from the following possible forms of
factorization of cos z in the complex plane:

(i) fei(z) = cos
√
z, gei(z) = z2;

(ii) fei(z) = Tn(z), gei(z) = cos z
n , where Tn(z) denotes the nth Chebyshev poly-

nomial (n ≥ 2);
(iii) fei(z) = 1

2 (z−n + zn), gei(z) = e
iz
n , where n denotes a non-negative integer

for i = 1, 2. Moreover, if the couple (fei(z), gei(z)) is of the form (i) or (ii) for
each i = 1 and 2, then f and g are, in particular, entire holomorphic mappings of
two complex variables.

Proof. The proof is a direct consequence of the Theorems 2.2, 2.6 and 3.9 used with
the three possible forms of factorization of cos z in the complex plane (see [3]). �

Corollary 3.23. The complex cosine cos z has three possible forms of factoriza-
tion in the complex plane and six additional possible forms of factorization in the
bicomplex space.
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Proof. From Theorem 3.22 we have nine possible forms of factorization of the
bicomplex cosine: cos(z1 + z2i2). If we put z2 = 0, we obtain automatically nine
possible forms of factorization of the cosine in the complex plane. However, when
f(ζ1+ζ2i2) = fe1(ζ1−ζ2i1)e1+fe1(ζ1+ζ2i1)e2 and g(z1+z2i2) = ge1(z1−z2i1)e1+
ge1(z1 + z2i1)e2 with z2 = 0, we have that g(z1) = ge1(z1)e1 + ge1(z1)e2 = ge1(z1)
and (f ◦ g)(z1) = (fe1 ◦ ge1)(z1). In that case, we come back to the three classical
complex forms of factorization of cos z1. Hence, the complex cosine has exactly six
new possible forms of factorization in the bicomplex space. �
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Québec, G9A 5H7
Canada
e-mail: Dominic.Rochon@UQTR.CA




