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On Factorization of Bicomplex
Meromorphic Functions

K.S. Charak and D. Rochon

Abstract. In this paper the factorization theory of meromorphic functions
of one complex variable is promoted to bicomplex meromorphic functions.
Many results of one complex variable case are seen to hold in bicomplex
case, and it is found that there are results for meromorphic functions of one
complex variable which are not true for bicomplex meromorphic functions.
In particular, we show that for any bicomplex transcendental meromorphic
function F', there exists a bicomplex meromorphic function G such that GF'
is prime even if the set:

{a € T: F(w) 4+ a¢(w) is not prime}
is empty or of cardinality N; for any non-constant fractional linear bicomplex
function ¢. Moreover, as specific application, we obtain six additional possible
forms of factorization of the complex cosine cos z in the bicomplex space.
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1. Introduction

The factorization theory of meromorphic functions of one complex variable is to
study how a given meromorphic function can be factorized into other simpler mero-
morphic functions in the sense of composition. In number theory, every natural
number can be factorized as a product of prime numbers. Therefore, prime num-
bers serve as building blocks of natural numbers and the theory of prime numbers
is one of the main subarea of number theory. In our situation, we also have the
so-called prime functions which play a similar role in the factorization theory of
meromorphic functions as prime numbers do in number theory. More specifically,
factorization theory of meromorphic functions essentially deals with the primeness,
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pseudo-primeness and unique factorizability of a meromorphic function. We start
with the following concepts.

Definition 1.1. Let F' be a meromorphic function. Then an expression

F(z) = f(9(2)) (1.1)
where f is meromorphic and g is entire (¢ may be meromorphic when f is a rational
function) is called a factorization of F' with f and ¢ as its left and right factors
respectively. F' is said to be non-factorizable or prime if for every representation
of F of the form (1.1) we have that either f or g is linear. If every representation
of F of the form (1.1) implies that f is rational or g is a polynomial (f is linear
whenever g is transcendental, g is linear whenever f is transcendental), we say
that F is pseudo-prime (left-prime, right-prime). If the factors are restricted to
entire functions, the factorization is said to be in entire sense and we have the
corresponding concepts of primeness in entire sense (called E-primeness), pseudo-
primeness in entire sense (called E-pseudo-primeness) etc.

The first example of prime function is F'(z) = exp(z)+ 2z given by Rosenbloom
[23] who gave the definition of prime transcendental entire function by considering
entire factors only, and asserted without proof that the function F(z) = z+exp(z)
is prime. In 1968, F. Gross [7] gave a complete proof of this assertion and ex-
tended the study of primeness to meromorphic functions and gave Definition 1.1.
No systematic theory has actually been developed to handle the problems of fac-
torization of transcendental meromorphic functions. However, recently, T.W. Ng
[9, 10, 11, 12] proved some results which of course can solve some factorization
problems in a systematic way. He introduced the methods from the Theory of
Complex Analytic Sets and local holomorphic dynamics to solve some factoriza-
tion problems. Classical function theory and the Nevanlinna Value Distribution
theory are the main tools used in factorization theory of meromorphic functions.
Most of the classes of functions which have been studied are concerned with the
following one for several factors: (1) Growth of the function, (2) Distribution of
zeros, (3) Periodicity, (4) Fixed-points, (5) Solutions of linear differential equa-
tions. For complete details on factorization theory of meromorphic functions one
can refer to the books of C.T. Chuang and C.C. Yang [3], and F. Gross [5].

The main purpose of the present paper is to try to extend and promote
the research on Factorization theory of meromorphic functions in one complex
variable to two complex variables via Bicomplex Function Theory [14, 15, 16,
18]. In our study of factorization theory of bicomplex meromorphic functions,
the idempotent representation of bicomplex meromorphic functions plays a vital
role since the parallel definitions of factorization of meromorphic functions of one
complex variable do not work. It is found that many results from one variable
theory hold in bicomplex situation whereas some fail to hold, and this is the point
of difference between the two situations and so makes sense to investigate. In
particular, we show that for any bicomplex transcendental meromorphic function
F, there exists a bicomplex meromorphic function G such that GF is prime even
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if the set:

{a € T: F(w) + a¢(w) is not prime}
is empty or of cardinality ¥; for any non-constant fractional linear bicomplex
function ¢. Moreover, as specific application, we obtain six additional possible
forms of factorization of the complex cosine cos z in the bicomplex space.

2. Preliminaries

2.1. Bicomplex numbers

Bicomplex numbers are defined as

T:= {2’1 + 29ig | 21,22 € (C(il)} (21)
where the imaginary units iy,iz and j are governed by the rules: i3 = i3 = —1,
j?=1and
iz = i2ii = |,
i = jii = -l (2.2)
i2j = jiz = —i1

Note that we define C(ig) := {z + yix | i = —1 and x,y € R} for k = 1,2. Hence,
it is easy to see that the multiplication of two bicomplex numbers is commutative.
In fact, the bicomplex numbers

T = Cl¢(1,0) = Cle(0,1)
are unique among the complex Clifford algebras in that they are commutative but
not division algebra. It is also convenient to write the set of bicomplex numbers as
T :.= {’wo + wily + weoig + w3j | wo, W1, We, W3 € R} (23)

In particular, in equation (2.1), if we put z; = = and 22 = yi; with z,y € R,
then we obtain the following subalgebra of hyperbolic numbers, also called duplex
numbers (see, e.g., [20, 26]):

D:={z+yj|j?>=1, z,y € R} = Clg(0,1).

Complex conjugation plays an important role both for algebraic and geomet-
ric properties of C. For bicomplex numbers, there are three possible conjugations.
Let w € T and 21,22 € C(iy) such that w = z; 4 22i2. Then we define the three
conjugations as:

wit = (21 + 22i2)" := 21 + Zala, (2.4a)
w'? = (21 + 2282)"2 := 21 — 200, (2.4b)
whs = (21 + 22i2)"* := 21 = Zala, (2.4¢)

where Zj, is the standard complex conjugate of complex numbers z;, € C(iy). If
we say that the bicomplex number w = z1 + 29is = wg + wiiy + weiz + wsj
has the “signature” (+ 4 ++), then the conjugations of type 1,2 or 3 of w have,
respectively, the signatures (+ — +—), (+ + ——) and (+ — —+). We can verify
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easily that the composition of the conjugates gives the four-dimensional abelian
Klein group:

o |l fo | T1|T2]|Ts
To || To | T1 | T2 | Ts
Ty || T | To | Ts | T2 (2.5)

fa | T2 | Ts | To | T
fa || Ta | T2 | 11| To

where wfo :=w VYw € T.
The three kinds of conjugation all have some of the standard properties of
conjugations, such as:

(s+t)n = sle 4 ¢, (2.6)
(sTk)Tk = s, (2.7)
(s-t)fr = shu. gl (2.8)

for s,t € Tand k=0,1,2,3.

We know that the product of a standard complex number with its conjugate
gives the square of the Euclidean metric in R?. The analogs of this, for bicomplex
numbers, are the following. Let 21, 20 € C(i1) and w = 21 + 2212 € T, then we have
that [20]:

lwlf, == w-wh =2} + 23 € C(iy), (2.9a)
lwiZ, == w-w' = (|21]° — |22]°) + 2Re(21%2)iz € C(i2), (2.9b)
|w|J2 = w-wls = (|21|2 + |22|2) —2Im(z122)j € D, (2.9¢)

where the subscript of the square modulus refers to the subalgebra C(iy), C(iz) or
D of T in which w is projected. Note that for z1, 20 € C(i1) and w = z1 + 2012 € T,
we can define the usual (Euclidean in R?*) norm of w as |w| = /|21]2 + |22]? =

«/Re(jw]?).

2
It is easy to verify that w - |M—2 = 1. Hence, the inverse of w is given by
i1
T2
o 2 (2.10)
|wl?,
From this, we find that the set N'C of zero divisors of T, called the null-cone, is
given by {z1 + z2i2 | 22 + 23 = 0}, which can be rewritten as

NC ={z(iy £ i2)| 2z € C(i1)}. (2.11)
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2.2. Bicomplex holomorphic functions

It is also possible to define differentiability of a function at a point of T:

Definition 2.1. Let U be an open set of T and wy € U. Then, f: U CT — T is
said to be T-differentiable at wy with derivative equal to f/(wg) € T if

p L) = Iw0)

w—wo w — Wo

(w—wq inv.)

We also say that the function f is T-holomorphic on an open set U if and
only if f is T-differentiable at each point of U.

Using w = 21 + 22i2, a bicomplex number w can be seen as an element (21, 22)
of C2%, so a function f(z1 + 22i2) = f1(z1, 22) + fa(21, 22)i2 of T can be seen as a
mapping f(21,22) = (f1(21, 22), f2(z1, 22)) of C2. Here we have a characterization
of such mappings:

Theorem 2.2. Let U be an open set and f : U C T — T such that f € C1(U),
and let f(z1 + z2i2) = fi(z1,22) + fa(z1, 22)ia. Then f is T-holomorphic on U if
and only if

f1 and fo are holomorphic in z1 and zo,

and
oft _ 0fa d dfa  0Ofi
0

2= —Z== on U.
62’2 "

(921 a 62’2 an 6_2:1
Moreover, f' = g—i + %ig and f'(w) is invertible if and only if det Jy(w) # 0.

This theorem can be obtained from results in [14] and [19]. Moreover, by the
Hartogs theorem [25], it is possible to show that “f € C1(U)” can be dropped from
the hypotheses. Hence, it is natural to define the corresponding class of mappings
for C2:

Definition 2.3. The class of T-holomorphic mappings on a open set U C C? is
defined as follows:

Oh _0f 9 _ O
821 82’2’ 821 822

It is the subclass of holomorphic mappings of C? satisfying the complexified
Cauchy-Riemann equations.

TH(U) :={f:U C C?> — C?f € H(U) and

n U}.

We remark that f € TH(U) in terms of C? if and only if f is T-differentiable
on U. It is also important to know that every bicomplex number z; 4 z2iz has the
following unique idempotent representation:

21 + 29ig = (Zl — 22i1)61 + (21 + Zgil)ez. (212)

where e; = 12ﬂ and ex = 12;3 This representation is very useful because: addition,
multiplication and division can be done term-by-term. It is also easy to verify the
following characterization of the non-invertible elements.
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Proposition 2.4. An element w = z1 + z2iz will be in the null-cone if and only if
Z1 — ZQil =0 or Z1 +2’2i1 =0.

The notion of holomorphicity can also be seen with this kind of notation.
For this we need to define the projections Py, Py : T — C(i1) as Pi(z1 + 22i2) =
z1 — 2011 and Ps (Zl + Zgiz) = 21 + 20i7.

Definition 2.5. We say that X C T is a T-cartesian set determined by X; and X
HX =X x. X9 := {21+22i2 € T : 21+ 2903 = wyeq +wseq, (wl,wz) € X1 x X2}
Now, it is possible to state the following striking theorems [14]:

Theorem 2.6. Let X1 and Xo be open sets in C(i1). If fe1 : X1 — C(i1) and
fe2 1 Xo — C(i1) are holomorphic functions of C(i1) on X1 and Xa respectively,
then the function [ : X1 X Xo — T defined as
f(z1 + 22i2) = fer(21 — 22i1)er + fea(21 + 22i1)e2 V 21 + 2002 € X X Xp
is T-holomorphic on the open set X1 X, Xo and
J'(z1 + 22i2) = [l (21 — z2i1)er + flo(21 + 22i1)ez

V 21 + 20i2 € X7 X Xo.

Theorem 2.7. Let X be an open set in T, and let f : X — T be a T-holomorphic

function on X. Then there exist holomorphic functions feo1 : X1 — C(i1) and
fe2 : Xo — C(i1) with X1 = P1(X) and X2 = Py(X), such that:

f(z1 + 22i2) = fer(21 — z2i1)e1 + fe2(21 + 22i1)e2 V 21 + 2202 € X,

3. Bicomplex meromorphic functions

3.1. Basic definitions

In the complex plane, it is well known (see [24]) that a function f is meromorphic
in an open set U if and only if f is a quotient g/h of two functions which are
holomorphic in U where h is not identically zero in any component of U. Based
on this definition we define a bicomplex meromorphic function as follows.

Definition 3.1. A function f is said to be bicomplex meromorphic in an open set
X C Tif fis a quotient g/h of two functions which are bicomplex holomorphic in
X where h is not identically in the null-cone in any component of X.

Theorem 3.2. Let f: X — T be a bicomplex meromorphic function on the open
set X C T. Then there exist meromorphic functions fei : X1 — C(i1) and
feg : X2 — (C(il) with X1 = P1 (X) and X2 = P2<X), such that:

f(z1 + 22i2) = fe1(z1 — 22i1)e1 + fea(21 + 22i1)e2 V 21 + 2202 € X.



On Factorization of Bicomplex Meromorphic Functions 61

Proof. Let f: X — T be a bicomplex meromorphic function on X. Then f is a
quotient g/h of two functions which are bicomplex holomorphic in X where h is
not identically in the null-cone in any component of X. Therefore, from Theorem
2.7 and Proposition 2.4, there exist holomorphic functions ge1, he1 : X1 — C(iq)
and ge2, hea : Xo — C(ip) with X; = P1(X) and X5 = P5(X), such that:

g(21 + 22i2) = ge1(21 — 22i1)€1 + gea (21 + 20i1)e2
and

h(z1 4 z2i2) = he1(21 — 22i1)e1 + hea(21 + 22i1)es
V z1 + 20i € X where he; is not identically zero in any component of X; for
i =1, 2. Hence,
ge1(21 — z2i1)e1 + gea(21 + 20i1)e2
hei(z1 — z2i1)er + hea(21 + 22i1)e2
ge1(z1 — 2211) ge2(21 + 2211) es
hei(z1 — 2211) he2(z1 + 22i1)
= feir(z1 — z2i1)er + fea(2z1 + 22i1)e2

f(z1 + 20i2) =

where f; is meromorphic in X; for i=1,2. O

Definition 3.3. Let f : X — T be a bicomplex meromorphic function on the open
set X C T. We will say that w = (21 — 22i1)e1 + (21 + 2011 )ea € X is a (strong)
pole for the bicomplex meromorphic function

F(w) = Fe1(z1 — z2i1)e1 + Fe1 (21 + 22i1)e2
if 21 — 2013 € P1(X) (and) or 21+ 2211 € P2(X) are poles for Fp; : P1(X) — C(i1)
and Feg : Po(X) — C(i1) respectively.
Remark 3.4. Poles of bicomplex meromorphic functions are not isolated singular-
ities.
It is also easy to obtain the following characterization of poles.

Proposition 3.5. Let f : X — T be a bicomplexr meromorphic function on the
open set X C T. If wy € X then wy is a pole of f if and only if

lim |f(w)] = oo

Definition 3.6. The order of a bicomplex meromorphic function
F(w) = Fe1(21 — 22i1)e1 + Fea(21 + 22i1)e2
is defined as

p(F) = maz{p(Fur), p(F.2)}.

Finally, to avoid any confusion, we will say that a function f: T — T is a
transcendental bicomplex meromorphic function on T if f.; : C(i;) — C(i1) is a
transcendental meromorphic function for i = 1, 2.
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3.2. Factorization of bicomplex meromorphic functions

In this subsection we introduce the bicomplex version of the factorization of mero-
morphic functions in the plane.

Definition 3.7. Let F' be a bicomplex meromorphic function on T. Then F is said
to have f and g as left and right factors respectively if F,; has fe; and ge; as left
and right factors respectively for i = 1,2, i.e., fe; is meromorphic and g; is entire
(ge; may be meromorphic when f.; is rational) for ¢ =1, 2.

Remark 3.8. If F has f and g as left and right factors respectively then we always
have the following factorization: F(w) = f(g(w)).

Proof. Let Fe; = fei(gei(2)) on C(iy1) for ¢ = 1,2. Then

flg(w)) = f(ge1(z1 — 22i1)e1 + gea (21 + 2211 )e2)
= fe1(ge1(z1 — z2i1))er + fea(ge2(21 + 2211))e2)
= Fo1(z1 — 22i1)e1 + Fea(21 + 22i1)e2
= F(w). O
Theorem 3.9. Let F(w) be a bicomplex meromorphic function on T. If F(w) =
f(g(w)) where f is bicomplex meromorphic and g is bicomplex entire (g may be

bicomplex meromorphic when f is bicomplex rational) then F has [ and g as left
and right factors respectively.

Proof. From Theorem 3.2,
F(Zl + ZQig) = Fel (Zl — 22i1)61 + FeQ(Zl + 22i1)ez on T
where F; is meromorphic on C(iy) for ¢ = 1,2. Moreover, Vw € T
Fw) = f(g(w))
= f(ge1(21 — 22i1)e1 + ge2(21 + 22i1)e2)
= fe1(ge1(21 — 22i1))e1 + fe2(ge2(21 + 22i1))e2.
Hence, Fo; = fei(gei(2)) on C(i1) where f,; is meromorphic and g.; is entire (ge;

may be meromorphic when f; is rational) for i = 1, 2. O

Proposition 3.10. The converse of Theorem 3.9 is false.

Proof. Supposed that F,; has f.; and g; as left and right factors respectively. In
that case, the functions F = f(g(w)). However, in the situation where you have
a rational function (with poles) for f.; with a meromorphic function (with poles)
for g1 and an entire function for f.o and ge2 then the complete function g will be
bicomplex meromorphic (with poles) where f is not bicomplex rational. O

It is now possible to define the concept of prime (pseudo-prime) function in
terms of the idempotent representation.
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Definition 3.11. A bicomplex meromorphic function
F(Zl + Zgiz) =F, (Zl — 22i1)61 + Feg(zl + Zgil)ez on T

is said prime (pseudo-prime), if the meromorphic functions F,; and Fo are prime
(pseudo-prime).

Remark 3.12. All bicomplex polynomials are pseudo-prime, and bicomplex poly-
nomials of prime degree are prime.

Theorem 3.13. If every factorization of a bicomplex meromorphic function F(w) =
f(g(w)) into left and right factors implies that f or g is bicomplex linear (bicomplex
polynomial or f is rational) then F is prime (pseudo-prime).

Proof. First, we note that a bicomplex meromorphic function h(z; + 22i2) =
he1(z1 — 2z2i1)e1 + hea(z1 + 22i1)ez is bicomplex linear (bicomplex polynomial)
if and only if h; is linear (polynomial) for ¢ = 1,2. Now, since every factorization
of F(w) of the form f(g(w)) implies that either f or g is bicomplex linear (bicom-
plex polynomial or f is bicomplex rational), then f.; or g.; is linear (polynomial or
fei is rational) for ¢ = 1,2. This further implies that F.; is prime (pseudo-prime)
fori=1,2. O

Proposition 3.14. The converse of Theorem 3.13 is false.

Proof. Supposed that every factorization of Fe;(w) = fei(gei(w)) into left and right
factors implies that fe; or ge; is polynomial or fe; is rational for ¢ = 1,2. In that
case, the function F is supposed to be pseudo-prime but in the situation where
you have a polynomial for f.; and a rational function for f.o then the complete
function f in the bicomplex space will be neither a bicomplexe polynomial nor a
bicomplex rational function. O

In 1973, Gross, Osgoods and Yang posed the following problem (see [6]):
Given any transcendental entire function f, does there exist a meromorphic func-
tion g such that fg is prime? In [13], Noda gave an affirmative answer to the above
problem and in [8] Qiao and Yongxing extended this to meromorphic functions.
The next theorem will show that the same result is also true in the bicomplex case.

Theorem 3.15. Let F' be any bicomplex transcendental meromorphic function, then
there exists a bicomplex meromorphic function G such that GF is prime.

Proof. Let F(w) = Fe1(21 — 22i1)e1 + Fe1(21 + 22i1)e2 be any bicomplex tran-
scendental meromorphic function. Therefore, F,; is a transcendental meromorphic
function for ¢ = 1,2. Hence, there exists a meromorphic function Gg; such that
F.;Ge; is prime for ¢ = 1,2 (see Qiao and Yongxing [8]). Now, from Definition
3.11, F'G is prime when G is defined as follows:

G(w) = Gel (Zl — 22i1)e1 + Gel (2’1 + 22i1)e2. D

Theorem 3.16. A bicomplex transcendental entire function of finite order such that
F(T) C T~ is pseudo-prime.
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Proof. Let F be a bicomplex transcendental entire function such that F(T) c T—!.
Since p(F) is finite, p(Fe;) is also finite for ¢ = 1, 2. Moreover, since F(T) is always
invertible, it follows from Proposition 2.4 that the entire function F.; has no zeros
for ¢ = 1,2. Thus by a result of Gross (see [5], p. 215, Theorem 1) it follows that
each F; is pseudo-prime. Hence by Definition 3.11, F' is pseudo-prime. U

Ezample. exp(z1 + 2z2i2) is pseudo-prime.

In [5] Fred Gross conjectured that if f and g are non-linear entire functions,
at least one of them transcendental, then the composite function fog has infinitely
many fix-points. Its factorization version is: if P is a polynomial and if « is a non-
constant entire function, then the function F(z) = P(z)exp(«a(z)) + z is prime.
Bergweiler [2] proved this long pending conjecture in its general form as: if P
and @) are polynomials and « is an entire function such that Q and « are non-
constant, and P, @ and « do not have a non-linear common right factor, then
P(z)exp(a(z)) + Q(z) is prime, and conversely also. The bicomplex analogue of
Bergweiler’s result also holds with stronger hypotheses.

Definition 3.17. Let F(w) = Fel (2’1 — 22i1)61 + Fel (Zl + 22i1)e2 :D — T be any
bicomplex function. The function F is said to be strongly non-constant (non-linear)
on D if F,; is non-constant (non-linear) on P;(D) for ¢ =1, 2.

Theorem 3.18. Let P and Q be bicomplex polynomials and o be a bicomplex entire
function. Suppose that Q and « are strongly non-constant for i = 1,2 and let
F(w) = P(w) exp(a(w)) + Q(w). Then F is prime if and only if P, Q, and a do
not have strongly non-linear bicompler common right factor.

Proof. Let

P(z1 + 22i2) = Pe1(21 — 22i1)e1 + Pea(21 + 22i1)e2
Q(z1 + 2z2i2) = Qe1(z1 — 22i1)e1 + Qe2(21 + 22i1)e2
05(2’1 + Zgiz) = Q1 (Zl — 22i1)61 + a62(21 + 22i1)e2.
Then it follows that
g(z1 + 2z2d2) = ge1(21 — 22i1)€1 + ge2(21 + 22i1)

is a strongly non-linear bicomplex common right factor of P, @, and « if and only
if ge; is a non-linear common right factor of Pe;, Q¢;, and «.; for i =1, 2.
Now since

fog=(fe10ge1)e1r + (fe2 0 ge2)e2
and

f+9=(fe1 + ge1)er + (fe2 + ge2)e2,
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we have
F(w) = P(w) exp(a(w)) + Q(w)
= (P (wr)e1 + Pez(wz)ez)(ead(wl)% + 60‘@2(“’2)62)
+ (Qer(wr)er + Qez(w2)ez)
= (Per(w1)e™ ™) + Qe (w1))er + (Pez(wa)e®* ™) + Qea(ws))ea

where w = 21 + 29d2, w1 = 21 — 2011 and wy = 21 + 29i1. Writing F(w) =
Fei(wr)er + Feo(we)es we find from above that

Foi(w;) = Pei(w;)e® (") + Qei(w;)

which by Bergweiler’s result (see [2]) is prime if and only if P.;, Q.;, and a,; do not
have a non-linear common right factor for ¢ = 1,2. Therefore, since an arbitrary
bicomplex function f(w) is strongly non-constant if and only if P;(f(w)) and
P,(f(w)) is non-constant, we obtain from our hypotheses and Theorem 3.13 that
F(w) = P(w) exp(a(w)) + Q(w) is prime if and only if P, @, and « do not have
strongly non-linear bicomplex common right factor. (]

Remark 3.19. As for one complex variable, the Theorem 3.18 implies that if f
and g are strongly non-linear bicomplex entire functions, at least one of them
transcendental, then the composite function f o g has infinitely many fix-points.

In [1], Baoqin and Guodong proved the following: if f is any transcendental
meromorphic function, then for any non-constant fractional linear function ¢, the
set

{a € C: f(z) + ag(z) is not prime}
is at most countable. We will now show that bicomplex version of this result is
false.

Theorem 3.20. Let f be any bicomplex transcendental meromorphic function, then
for any non-constant fractional linear bicomplex function ¢, the set

{a € T: f(w) + ap(w) is not prime}
is empty or of cardinality Ny.
Proof. For w = 21 4 29i2, w1 = 21 — 2211, and we = 21 + 22i1 writing
f(w) = fe(wi)er + fea(w2)ez

P(w) = de1(w1)er + dea(w2)ez,
where f,; is transcendental meromorphic and ¢.; is fractional linear for i = 1,2
where ¢.; is non-constant for ¢ = 1 or i = 2. Without loss of generality, let ¢.; be
non-constant. Then, the set

{a € C(i1) : fe1(2) + ade1(z) is not prime}

is at most countable.
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Now by taking a = a.1€1 + ae2€2 and since

f(w) + ap(w) = (fer(wi) + aerder(wi))er + (fea(w2) + acadea(w2))ez,
it follows from Definition 3.11 that:

f(w) 4+ ap(w) is not prime < fe1(2) + ac1¢e1(2) is not prime
or feo(2) + aeapea(z) is not prime.
Since |[{a € C(i1) : fe2(2) + age2(z) is prime or not}| = |C(iz)| = Ny then
{a €T: f(w)+ ap(w) is not prime}
is also of cardinality N; except if the set is empty. O

Finally, by using idempotent representations of bicomplex numbers and bi-
complex functions, and by using Definition 3.11 and Theorem 4.11 in [3] we have
the following result.

Theorem 3.21. Every bicomplex meromorphic solution of an nth-order ordinary
bicomplez differential equation with bicomplex rational functions as coefficients is
pseudo-prime.

Ezample. cos(z1 + z2i2) is pseudo-prime since it satisfies the ordinary bicomplex
linear differential equation y”(w) — y(w) = 0.

Theorem 3.22. Let F(z1 + 22i2) = cos(z1 + 2212), the possible forms of the factor-
ization of F' = f o g are as follows:

F(G + Giz) = fer (G — Geir)er + fea (G + Coir)es
and
g(z1 + 22i2) = ge1(z1 — 22i1)e1 + gea (21 + 22i1)e2

where the couple (fei(2), gei(2)) is chosen from the following possible forms of
factorization of cos z in the complex plane:

(1) fei(z) = cos \/57 gei(z) = 22;
(ii) fei(2) = Tn(2), gei(2) = cos =, where Ty, (z) denotes the nth Chebyshev poly-
nomial (n > 2);
(iii) fei(2) = 3(z7" +2"), gei(z) = e, where n denotes a non-negative integer
for i = 1,2. Moreover, if the couple (fei(2), gei(2)) is of the form (i) or (ii) for
each i =1 and 2, then f and g are, in particular, entire holomorphic mappings of
two complex variables.

Proof. The proof is a direct consequence of the Theorems 2.2, 2.6 and 3.9 used with
the three possible forms of factorization of cos z in the complex plane (see [3]). O

Corollary 3.23. The complex cosine cosz has three possible forms of factoriza-
tion in the complex plane and six additional possible forms of factorization in the
bicomplex space.
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Proof. From Theorem 3.22 we have nine possible forms of factorization of the
bicomplex cosine: cos(z1 + z2i2). If we put zo = 0, we obtain automatically nine
possible forms of factorization of the cosine in the complex plane. However, when
f(G+Giz) = fer (G —Coit)er+fer(C1+Coi)ez and g(z1+22i2) = ge1(21—2211)e1+
ge1(21 + 2211 )ea with zo = 0, we have that g(z1) = ge1(21)e1 + ge1(21)e2 = ge1(21)
and (f o0 g)(z1) = (fe1 © ge1)(21). In that case, we come back to the three classical
complex forms of factorization of cos z;. Hence, the complex cosine has exactly six
new possible forms of factorization in the bicomplex space. O
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