
Introduction
Preliminaries

Infinite-Dimensional Hilbert Spaces
The Bicomplex Quantum Mechanics

Bicomplex Functional Analysis

Dominic Rochon1
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Bicomplex numbers, just like quaternions, are a generalization of
complex numbers by means of entities specified by four real
numbers. These two number systems, however, are different in two
important ways: quaternions, which form a division algebra, are
noncommutative, whereas bicomplex numbers are commutative but
do not form a division algebra.

Division algebras do not have zero divisors, that is, nonzero elements
whose product is zero. Many believe that any attempt to generalize
quantum mechanics to number systems other than complex numbers
should retain the division algebra property. Indeed considerable work
has been done over the years on quaternionic quantum mechanics.
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In the past few years, however, it was pointed out that several
features of quantum mechanics can be generalized to bicomplex
numbers. A generalization of Schrödinger’s equation for a particle in
one dimension was proposed, and self-adjoint operators were defined
on finite-dimensional bicomplex Hilbert spaces. Recently, eigenvalues
and eigenfunctions of the bicomplex analogue of the quantum
harmonic oscillator Hamiltonian were obtained in full generality.

The perspective of generalizing quantum mechanics to bicomplex
numbers motivates us in developing further mathematical tools
related to infinite-dimensional bicomplex Hilbert spaces and
operators acting on them.
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Definition
Bicomplex numbers are defined as

M(2) := {z1 + z2i2 | z1, z2 ∈ C(i1)}

where the imaginary units i1, i2 and j are governed by the rules:
i21 = i22 = −1, j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1.

Note that we define C(ik ) := {x + y ik | i2k = −1 and x , y ∈ R} for
k = 1, 2.

D. Rochon Bicomplex Functional Analysis



Introduction
Preliminaries

Infinite-Dimensional Hilbert Spaces
The Bicomplex Quantum Mechanics

Bicomplex Numbers
Conjugation and Moduli
Idempotent Basis
M(2)-Module Spaces

Definition
Bicomplex numbers are defined as

M(2) := {z1 + z2i2 | z1, z2 ∈ C(i1)}

where the imaginary units i1, i2 and j are governed by the rules:
i21 = i22 = −1, j2 = 1 and

i1i2 = i2i1 = j,
i1j = ji1 = −i2,
i2j = ji2 = −i1.

Note that we define C(ik ) := {x + y ik | i2k = −1 and x , y ∈ R} for
k = 1, 2.

D. Rochon Bicomplex Functional Analysis



Introduction
Preliminaries

Infinite-Dimensional Hilbert Spaces
The Bicomplex Quantum Mechanics

Bicomplex Numbers
Conjugation and Moduli
Idempotent Basis
M(2)-Module Spaces

In fact, the bicomplex numbers

M(2) ∼= ClC(1, 0) ∼= ClC(0, 1)

are unique among the complex Clifford algebras in the sense that they are
commutative but not division algebra. It is also convenient to write the
set of bicomplex numbers as

M(2) := {w0 + w1i1 + w2i2 + w3j | w0,w1,w2,w3 ∈ R}.

In particular, if we put z1 = x and z2 = y i1 with x , y ∈ R in
z1 + z2i2, then we obtain the following subalgebra of hyperbolic
numbers, also called duplex numbers:

D := {x + y j | j2 = 1, x , y ∈ R} ∼= ClR(0, 1).

Zero divisors make up the so-called null cone NC. That terminology
comes from the fact that when w is written as z1 + z2i2, zero
divisors are such that z2

1 + z2
2 = 0.
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Complex conjugation plays an important role both for algebraic and
geometric properties of C. For bicomplex numbers, there are three
possible conjugations. Let w ∈M(2) and z1, z2 ∈ C(i1) such that
w = z1 + z2i2. Then we define the three conjugations as:

w†1 = (z1 + z2i2)†1 := z1 + z2i2,

w†2 = (z1 + z2i2)†2 := z1 − z2i2,

w†3 = (z1 + z2i2)†3 := z1 − z2i2,

where zk is the standard complex conjugate of complex numbers
zk ∈ C(i1).
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We know that the product of a standard complex number with its
conjugate gives the square of the Euclidean metric in R2. The analogs of
this, for bicomplex numbers, are the following. Let z1, z2 ∈ C(i1) and
w = z1 + z2i2 ∈M(2), then we have that:

|w |2i1 := w · w†2 ∈ C(i1),

|w |2i2 := w · w†1 ∈ C(i2),

|w |2j := w · w†3 ∈ D.

In this talk we will often use the Euclidean R4-norm defined as

|w | :=
√
|z1|2 + |z2|2 =

√
Re(|w |2j ) .
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It is also important to know that every bicomplex number
w = z1 + z2i2 has the following unique idempotent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2.

where e1 = 1+j
2 and e2 = 1−j

2 .

From this, we can introduce two projection operators

P1 : (z1 + z2i2) ∈M(2) 7→ (z1 + z2i2)1̂ ∈ C(i1),

P2 : (z1 + z2i2) ∈M(2) 7→ (z1 + z2i2)2̂ ∈ C(i1).

where (z1 + z2i2)1̂ = (z1 − z2i1) and (z1 + z2i2)2̂ = (z1 + z2i1). The
caret notation explicitly refer to the factor of ek of the idempotent
decomposition.
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Bicomplex numbers make up a commutative ring. What vector
spaces are to fields, modules are to rings. A module defined over the
ring M(2) of bicomplex numbers will be called an M(2)-module.

Definition

Let M be an M(2)-module. For k = 1, 2, we define Vk as the set of all
elements of the form ek|ψ〉, with |ψ〉 ∈ M. Succinctly, V1 := e1M and
V2 := e2M.

We have used Dirac’s notation for elements of M which, following,
we will call kets.

For k = 1, 2, addition and multiplication by a C(i1) scalar are closed
in Vk . Therefore, Vk is a vector space over C(i1).
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Theorem

The M(2)-module M can be viewed as a vector space M ′ over C(i1), and
M ′ = V1 ⊕ V2.

Henceforth we will write |ψk〉 = ek|ψ〉, keeping in mind that
ek|ψk〉 = |ψk〉 ∈ Vk for k = 1, 2.

From a set-theoretical point of view, M and M ′ are identical. In this
sense we can say, perhaps improperly, that the module M can be
decomposed into the direct sum of two vector spaces over C(i1), i.e.
M = V1 ⊕ V2.
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The norm of a vector is an important concept in vector space theory.
We will now generalize it to M(2)-modules, making use of the
association established in the last Theorem.

definition

Let M be an M(2)-module and let M ′ be the associated vector space.
We say that ‖ · ‖ : M −→ R is a M(2)-norm on M if the following holds:

1. ‖ · ‖ : M ′ −→ R is a norm;
2.
∥∥w · |ψ〉∥∥ ≤ √2

∣∣w ∣∣ · ∥∥|ψ〉∥∥, ∀w ∈M(2), ∀|ψ〉 ∈ M.

A M(2)-module with a M(2)-norm is called a normed
M(2)-module.
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In vector space theory, a norm can be induced by a scalar product.
Having in mind the use of such norms, we will used the following
definition of a bicomplex scalar product (the physicists’ ordering
convention being used).

Definition

Let M be an M(2)-module. Suppose that with each pair |ψ〉 and |φ〉 in
M, taken in this order, we associate a bicomplex number (|ψ〉, |φ〉). We
say that the association defines a bicomplex scalar (or inner) product if it
satisfies the following conditions:

1. (|ψ〉, |φ〉+ |χ〉) = (|ψ〉, |φ〉) + (|ψ〉, |χ〉), ∀|ψ〉, |φ〉, |χ〉 ∈ M;
2. (|ψ〉, α|φ〉) = α(|ψ〉, |φ〉), ∀α ∈M(2), ∀|ψ〉, |φ〉 ∈ M;
3. (|ψ〉, |φ〉) = (|φ〉, |ψ〉)†3 , ∀|ψ〉, |φ〉 ∈ M;
4. (|ψ〉, |ψ〉) = 0 ⇔ |ψ〉 = 0, ∀|ψ〉 ∈ M.

OPEN QUESTION:

How to construct the theory if we define the bicomplex scalar product
with the other conjugate †2 (or †1) ?
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with the other conjugate †2 (or †1) ?
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Property 3 implies that (|ψ〉, |ψ〉) ∈ D. Definition 3 is intended to be
very general. In this paper we shall be more restrictive, by requiring
the bicomplex scalar product (·, ·) to be hyperbolic positive, that is,

(|ψ〉, |ψ〉) ∈ D+ := {αe1 + βe2|α, β ≥ 0}, ∀|ψ〉 ∈ M.

From the last definition it is easy to see that the following projection
of a bicomplex scalar product:

(·, ·)k̂ := Pk ((·, ·)) : M ×M −→ C(i1)

is a standard scalar product on Vk , for k = 1, 2.

Theorem

Let |ψ〉, |φ〉 ∈ M, then

(|ψ〉, |φ〉) = e1(|ψ1〉, |φ1〉)1̂ + e2(|ψ2〉, |φ2〉)2̂.

Moreover, the bicomplex scalar product is completely characterized by
the two standard scalar products (·, ·)k̂ on Vk .
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Definition

Let M be an M(2)-module and let (·, ·) be a bicomplex scalar product
defined on M. The space {M, (·, ·)} is called a M(2)-inner product space,
or bicomplex pre-Hilbert space.

If V1 and V2 are complete, then M ′ = V1⊕V2 is a direct sum of two
Hilbert spaces. It is easy to see that M ′ is also a Hilbert space, when
the following natural scalar product is defined over the direct sum:

(|ψ1〉 ⊕ |ψ2〉, |φ1〉 ⊕ |φ2〉) = (|ψ1〉, |φ1〉)1̂ + (|ψ2〉, |φ2〉)2̂ .
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From this scalar product, we can define a norm on the vector space
M ′: ∣∣∣∣|φ〉∣∣∣∣ :=

1√
2

√
(|φ1〉, |φ1〉)1̂ + (|φ2〉, |φ2〉)2̂

=
1√
2

√∣∣|φ1〉∣∣21 +
∣∣|φ2〉∣∣22 . (1)

Here we wrote ∣∣|φk〉∣∣k =
√

(|φk〉, |φk〉)k̂ ,

where | · |k is the natural scalar product induced norm on Vk . The
1/
√

2 factor in (1) is introduced so as to relate in a simple manner
the norm with the bicomplex scalar product.
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Indeed we have∣∣∣∣|φ〉∣∣∣∣ =
1√
2

√
(|φ1〉, |φ1〉)1̂ + (|φ2〉, |φ2〉)2̂ =

∣∣√(|φ〉, |φ〉)
∣∣.

Hence, since (·, ·) ∈ D+, we have in general that

(|φ〉, |φ〉) 6=
∣∣∣∣|φ〉∣∣∣∣2 ∈ R+

except when (|φ1〉, |φ1〉)1̂ = (|φ2〉, |φ2〉)2̂.

It is easy to check that ‖ · ‖ is a M(2)-norm on M and that the
M(2)-module M is complete with respect to the following metric
on M:

d(|φ〉, |ψ〉) =
∣∣∣∣|φ〉 − |ψ〉∣∣∣∣.

Thus M is a complete M(2)-module.
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Let us summarize what we found by means of a definition, an
example and a theorem.

Definition

A bicomplex Hilbert space is a M(2)-inner product space M which is
complete with respect to the induced M(2)-norm (1).

Example

Consider this following class of bicomplex functions with µ ∈ Rq.

f (µ ) = f1̂(µ) e1 + f2̂(µ) e2. (2)

We say that f is a bicomplex square-integrable function if and only if the
f̂s are both square-integrable functions, that is,∫

|f̂s(µ)|2 dµ <∞ (3)

for s = 1 and 2. Here dµ is the Lebesgue mesure on Rq.
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Example

We denote by Fq the set of bicomplex square-integrable functions of q
real variables. It can be shown that with standard addition and
multiplication, Fq makes up a M(2)-module. This module is explicitly
denoted as (Fq,M(2),+, ·), and it obviously has infinite dimensions. For
any f , g ∈ Fq, the following binary mapping takes two bicomplex
square-integrable functions and transforms them into a unique bicomplex
number:

(f , g) :=

∫
f †3 (µ) g(µ)dµ =

∑
s

es

∫
f̂s(µ)gŝ(µ)dµ. (4)

If we identify functions that differ only on a set of measure zero, the
binary mapping (4) satisfies all the properties of a scalar product.
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Example

Explicitly,

1 (f , g + h) = (f , g) + (f , h);

2 (f , αg) = α(f , g);

3 (f , g) = (g , h)†3 ;

4 (f , f ) = 0 if and only if f = 0.

The functions f and g are orthogonal if their scalar product vanish. We
say that f is normalized if (f , f ) = 1. With (4), one can define an
induced M(2)-norm on Fq as

‖f ‖ :=
1√
2

√
(f , f )1̂ + (f , f )2̂ =

1√
2

√∑
s

∫
|f̂s(µ)|2 dµ. (5)

With this induced M(2)-norm on Fq the structure

(Fq,M(2),+, ·, ( , ) , ‖ ‖) is a bicomplex Hilbert space.
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Theorem

Let M be a bicomplex Hilbert space. Then (Vk , (·, ·)k̂ ) is a complex (in
C(i1)) Hilbert space for k = 1, 2.

As a direct application of this result, we obtain the following
Bicomplex Riesz Representation Theorem.

Theorem (Riesz)

Let {M, (·, ·)} be a bicomplex Hilbert space and let f : M →M(2) be a
continuous linear functional on M. Then there is a unique |ψ〉 ∈ M such
that ∀|φ〉 ∈ M, f (|φ〉) = (|ψ〉, |φ〉).
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We will now use the Dirac notation for the scalar product:

(|ψ〉, |φ〉) = 〈ψ|φ〉 .

The one-to-one correspondence between bra 〈·| and ket |·〉 can be
established from the Bicomplex Riesz Representation Theorem
using

f (|φ〉) := 〈ψ|(|φ〉) = 〈ψ|φ〉 .

One can easily show that

Corollary

〈ψ|φ〉 = e1 〈ψ1|φ1〉1̂ + e2 〈ψ2|φ2〉2̂ .
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We close this section by showing a general version of Schwarz’s
inequality in a bicomplex Hilbert space.

Theorem (Bicomplex Schwarz inequality)

Let |ψ〉, |φ〉 ∈ M. Then

| 〈ψ|φ〉 | ≤
√

2
∥∥|ψ〉∥∥ ∥∥|φ〉∥∥.
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Proof.

From the complex (in C(i1)) Schwarz inequality we have

| 〈ψk|φk〉k̂ |
2 ≤

∣∣|ψk〉
∣∣2
k
·
∣∣|φk〉∣∣2k , ∀|ψk〉, |φk〉 ∈ Vk .

Therefore, if |ψ〉, |φ〉 ∈ M, we obtain that

| 〈ψ|φ〉 | = |e1 〈ψ1|φ1〉1̂ + e2 〈ψ2|φ2〉2̂ |

=
1√
2

√
| 〈ψ1|φ1〉1̂ |2 + | 〈ψ2|φ2〉2̂ |2

≤ 1√
2

√∣∣|ψ1〉
∣∣2
1
·
∣∣|φ1〉∣∣21 +

∣∣|ψ2〉
∣∣2
2
·
∣∣|φ2〉∣∣22

≤ 1√
2

√
(
∣∣|ψ1〉

∣∣2
1

+
∣∣|ψ2〉

∣∣2
2
)(
∣∣|φ1〉∣∣21 +

∣∣|φ2〉∣∣22)|

=
2√
2

∥∥|ψ〉∥∥ ∥∥|φ〉∥∥ =
√

2
∥∥|ψ〉∥∥ ∥∥|φ〉∥∥.
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Theorem

The constant
√

2 is the best possible in the bicomplex Schwarz inequality.

Proof.

Let us consider M = M(2). Then V1 = e1C(i1) and V2 = e2C(i1). Let
|ψk〉 := ekz1k and |φk〉 := ekz2k where z1k , z2k ∈ C(i1) for k = 1, 2. Now,
consider the following standard scalar product on Vk :

〈ψk|φk〉k̂ := z1kz2k

for k = 1, 2. If we let |ψ〉 = |φ〉 = e1, then

| 〈ψ|φ〉 | =
√

2
∥∥|ψ〉∥∥ ∥∥|φ〉∥∥

since 〈ψ|φ〉 = 〈e1|e1〉1̂ e1 + 〈0|0〉2̂ e2 = e1 and
∥∥|ψ〉∥∥ =

∥∥|φ〉∥∥ = 1√
2

.
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In this section we investigate more specific M(2)-modules, namely
those that have a countable basis.

Definition

Let M be a normed M(2)-module. We say that M has a Schauder
M(2)-basis if there exists a countable set {|ψ1〉 . . . |ψn〉 . . . } of elements
of M such that every element |ψ〉 ∈ M admits a unique decomposition as
the sum of a convergent series |ψ〉 =

∑∞
n=1 wn|ψn〉, wn ∈M(2).
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A normed M(2)-module with a Schauder M(2)-basis is called a
countable M(2)-module. In this context, it is always possible to
construct an orthonormal Schauder M(2)-basis in M.

Theorem (Orthonormalization)

Let M be a bicomplex Hilbert space and let {|ψn〉} be an arbitrary
Schauder M(2)-basis of M. Then {|ψn〉} can always be orthonormalized.

It is interesting to note that the normalizability of kets requires that
the scalar product belongs to D+ := {αe1 + βe2|α, β > 0}.
Moreover, this is a necessary condition to recover the standard
quantum mechanics from the bicomplex one.
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Proof.

Let us write 〈ψ1|ψ1〉 = a1̂e1 + a2̂e2 with a1̂, a2̂ ∈ R, and let

|ψ′1〉 = (z1̂e1 + z2̂e2)|ψ1〉,

with z1̂, z2̂ ∈ C(i1) and z1̂ 6= 0 6= z2̂. We get

〈ψ′1|ψ′1〉 = (|z1̂|
2e1 + |z2̂|

2e2) 〈ψ1|ψ1〉
= (|z1̂|

2e1 + |z2̂|
2e2)(a1̂e1 + a2̂e2)

= c1̂a1̂e1 + c2̂a2̂e2,

with ck̂ = |zk̂ |
2 ∈ R+. The normalization condition of |ψ′1〉 becomes

c1̂a1̂e1 + c2̂a2̂e2 = 1,

or c1̂a1̂ = 1 = c2̂a2̂. This is possible only if a1̂ > 0 and a2̂ > 0. In other
words, 〈ψ1|ψ1〉 ∈ D+.
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We conclude this section with this following characterization of the series
convergence in M.

Theorem

Let {|ψn〉} be an orthonormal sequence in the bicomplex Hilbert space M
and let {αn} be a sequence of bicomplex numbers. Then the series∑∞

n=1 αn|ψn〉 converges in M if and only if
∑∞

n=1 |αn|2 converges in R.
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In this section, we explain more precisely the relationship between M
and M ′. First, it is easy to show that V1 is orthogonal to V2 in
(M, (·, ·)) and (M ′, (·, ·)′) where

Definition

(|ψ〉, |φ〉)′ = 〈ψ|φ〉′

:=
1

2

[
〈ψ1|φ1〉1̂ + 〈ψ2|φ2〉2̂

]
.

Note: With this definition, M and M ′ give the same norm.

In fact, V⊥1 = V2. Therefore, the same symbol ⊥ can used for M
and M ′, and we have

Theorem

M = V1 ⊕ V⊥1 = V1 ⊕ V2 = M ′.
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Proof.

By definition of the orthogonal complement, we have:

V⊥1 = {|φ〉 ∈ M ′| 〈ψ|φ〉′ = 0 for all |ψ〉 ∈ V1}

and
V⊥1 = {|φ〉 ∈ M| 〈ψ|φ〉 = 0 for all |ψ〉 ∈ V1}.

However, 〈ψ|φ〉′ = 1
2

[
〈ψ1|φ1〉1̂ + 〈0|φ2〉2̂

]
= 0 ∀|ψ〉 ∈ V1 if and only if

〈ψ1|φ1〉1̂ = 0 ∀|ψ1〉 ∈ V1. Therefore, |φ1〉 = 0 and |φ〉 ∈ V2. Now,

〈ψ|φ〉 = 〈ψ1|φ1〉1̂ e1 + 〈0|φ2〉2̂ e2 = 0

∀|ψ〉 ∈ V1 if and only if 〈ψ1|φ1〉1̂ e1 = 0 ∀|ψ1〉 ∈ V1. Since,
〈ψ1|φ1〉1̂ ∈ C(i1), |φ〉 must be in V2. Hence,

M = V1 ⊕ V⊥1 = V1 ⊕ V2 = M ′.
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However, this is not the case for the subspace V . Let {|ψ1〉 . . . |ψn〉 . . . }
be a Schauder M(2)-basis associated with the bicomplex Hilbert space
{M, 〈·|·〉}. That is, any element |ψ〉 of M can be written as

|ψ〉 =
∞∑

n=1

wn|ψn〉, (6)

with wn ∈M(2). As was shown for the finite-dimensional case, an
important subset V of M is the set of all kets for which all wn in (6)
belong to C(i1). It is obvious that V is a non-empty normed vector space
over complex numbers with Schauder basis {|ψ1〉 . . . |ψn〉 . . . }.
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From previous result, we see that if {|ψ1〉 . . . |ψn〉 . . . } is an orthonormal
Schauder M(2)-basis and

∞∑
n=1

(e1zn1̂ + e2zn2̂)|ψn〉 =
∞∑

n=1

e1zn1̂|ψn〉+
∞∑

n=1

e2zn2̂|ψn〉

converges in M, then the series
∞∑

n=1

|e1zn1̂ + e2zn2̂|
2

converges in R. In particular,
∑∞

n=1 |znk̂ |
2 also converges. Hence∑∞

n=1 znk̂ |ψn〉 converges and this allows to define projectors P1 and P2

from M to V as

Pk (|ψ〉) :=
∞∑

n=1

znk̂ |ψn〉, k = 1, 2.

Therefore, any |ψ〉 ∈ M can be decomposed uniquely as

|ψ〉 = e1P1 (|ψ〉) + e2P2 (|ψ〉)
and Vk = ekV for k = 1, 2.
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As in the finite-dimensional case, one can easily show that ket
projectors and idempotent-basis projectors (denoted with the same
symbol) satisfy the following, for k = 1, 2:

Property

Pk (s|ψ〉+ t|φ〉) = Pk (s)Pk (|ψ〉) + Pk (t)Pk (|φ〉) .

OPEN QUESTION:

Is it possible to define the projectors P1 and P2 from M to V when
{|ψ1〉 . . . |ψn〉 . . . } is NOT orthonormal?
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Definition

Let {|ψn〉} be an orthonormal Schauder M(2)-basis of M and let V be
the associated vector space. We say that a scalar product is C(i1)-closed
under V if, ∀|ψ〉, |φ〉 ∈ V , we have 〈ψ|φ〉 ∈ C(i1).

We can prove that if the scalar product is C(i1)-closed under V then the
inner space (V , || · ||) is closed in M. Hence, since any closed linear
subspace of a Hilbert space satisfy the Projection Theorem, we have
that

M ′ = V ⊕ V⊥

when the scalar product is C(i1)-closed under V .
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In this case, it is easy to verify that the orthogonal complement of V for
(M ′, 〈·|·〉′) is

V⊥ = {e1|ψ〉 − e2|ψ〉 : |ψ〉 ∈ V } .
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Proof.

Let

V⊥ = {|φ〉 ∈ M ′| 〈ψ1|φ1〉1̂ + 〈ψ2|φ2〉2̂ = 0 for all |ψ〉 ∈ V }.

By definition of V , we have that

|ψ〉 = P1 (|ψ〉) e1 + P1 (|ψ〉) e2.

Therefore, 〈ψ1|φ1〉1̂ + 〈ψ2|φ2〉2̂ = 0 if and only if
(P1 (|ψ〉) ,P1 (|φ〉))1̂ + (P1 (|ψ〉) ,P2 (|φ〉))2̂ = 0. Moreover, since the
scalar product is C(i1)-closed under V then

(P1 (|ψ〉) ,P1 (|φ〉))1̂ = (P1 (|ψ〉) ,P2 (|φ〉))2̂

for all |ψ〉 ∈ V . Hence,

(P1 (|ψ〉) ,P1 (|φ〉) + P2 (|φ〉))1̂ = 0

for all |ψ〉 ∈ V . Then, P1 (|φ〉) = −P2 (|φ〉) and |ψ〉 = e1|ψ〉− e2|ψ〉.
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This is not the case for (M, 〈·|·〉) since the orthogonal complement of V
is {0}. In fact, since M is not a Hilbert space, the Projection Theorem
cannot be applied.

Proof.

Let

V⊥ = {|φ〉 ∈ M| 〈ψ1|φ1〉1̂ e1 + 〈ψ2|φ2〉2̂ e2 = 0 for all |ψ〉 ∈ V }.

By definition, the scalar products are in C(i1), then we have that

〈ψ1|φ1〉1̂ e1 + 〈ψ2|φ2〉2̂ e2 = 0

∀|ψ〉 ∈ V if and only if 〈ψ1|φ1〉1̂ = 〈ψ2|φ2〉2̂ = 0 ∀|ψ1〉 ∈ V1 and
∀|ψ2〉 ∈ V2. Hence, |φ1〉 = |φ2〉 = 0 and |φ〉 = 0.
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Finally, if we define

Definition

V †2

1 := {e1P2 (|ψ〉) + e2P1 (|ψ〉) : |ψ〉 ∈ V1} = {e2P1 (|ψ〉) : |ψ〉 ∈ V1}

where †2 is used as the natural extension of the conjugate †2 in
M(2), we obtain that V †2

1 = e2V = V2 = V⊥1 and

M = V1 ⊕ V †2

1 = V1 ⊕ V2 = M ′.

This definition of †2 is universal for any element inside a bicomplex
Hilbert space with an orthonormal Schauder M(2)-basis, and satisfy
the following properties:

1 (|φ〉†2)†2 = |φ〉;
2 (|φ〉 ± |ψ〉)†2 = |φ〉†2 ± |ψ〉†2 ;
3 (w |φ〉)†2 = w†2 |φ〉†2

∀|φ〉, |ψ〉 ∈ M and ∀w ∈M(2).
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Complex Hilbert spaces are fundamental tools of quantum
mechanics. We should therefore expect that bicomplex Hilbert
spaces should be relevant to any attempted generalization of
quantum mechanics to bicomplex numbers. Let us examine the
example of the quantum harmonic oscillator.

We start with the following function space. Let n be a nonnegative
integer and let α be a positive real number. Consider the following
function of a real variable x :

fn,α(x) := xn exp
{
−αx2

}
.
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Let S be the set of all finite linear combinations of functions fn,α(x),
with complex coefficients. Furthermore, let a bicomplex function
u(x) be defined as

u(x) = e1u1̂(x) + e2u2̂(x),

where u1̂ and u2̂ are both in S . The set of all functions u(x) is an
M(2)-module, denoted by MS .

Let u(x) and v(x) both belong to MS . We define a mapping (u, v)
of this pair of functions into D+ as follows:

(u, v) :=

∫ ∞
−∞

u†3 (x)v(x)dx =

∫ ∞
−∞

[
e1ū1̂(x)v1̂(x) + e2ū2̂(x)v2̂(x)

]
dx .
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e1ū1̂(x)v1̂(x) + e2ū2̂(x)v2̂(x)
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It is not hard to see that the last equation is always finite and
satisfies all the properties of a bicomplex scalar product.

Let ξ = e1ξ1̂ + e2ξ2̂ be in D+ and let us define two operators X
(position) and P (momentum) that act on elements of MS as
follows:

X{u(x)} := xu(x), P{u(x)} := −i1~ξ
du(x)

dx
.

In standard quantum mechanics, the position operator is the
operator that corresponds to the position observable of a particle.
The eigenvalue of the operator is the position vector of the particle.

It is not difficult to show the following commutator relation:

[X ,P] = i1~ξI.

Note that the action of X and P on elements of MS always yields
elements of MS . That is, X and P are defined on all of MS .
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Let m and ω be two positive real numbers. We define the bicomplex
harmonic oscillator Hamiltonian as follows:

H :=
1

2m
P2 +

1

2
mω2X 2.

The problem of the bicomplex quantum harmonic oscillator consists
in finding the eigenvalues and eigenfunctions of H.

That problem was solved in a previous paper on the topic. The
results can be summarized as follows. Let θk (k = 1̂, 2̂) be defined as

θk :=

√
mω

~ξk
x .
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Bicomplex harmonic oscillator eigenfunctions can then be written as
(the most general eigenfunction would have different l indices in the
two terms l and l ′):

φl(x) = e1φl 1̂ + e2φl 2̂

= e1

[√
mω

π~ξ1̂

1

2l l!

]1/2

e−θ
2
1̂
/2Hl(θ1̂) + e1

[√
mω

π~ξ2̂

1

2l l!

]1/2

e−θ
2
2̂
/2Hl(θ2̂),

where Hl are Hermite polynomials. The last equation can be written
more succinctly as

φl (x) =

[√
mω

π~ξ
1

2l l!

]1/2

e−θ
2/2Hl (θ),

where

θ := e1θ1̂ + e2θ2̂ and Hl (θ) := e1Hl (θ1̂) + e2Hl (θ2̂).
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where

θ := e1θ1̂ + e2θ2̂ and Hl (θ) := e1Hl (θ1̂) + e2Hl (θ2̂).
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Another way to express our eigenfunctions in term of real and
hyperbolic part is to rewrite the hyperbolic exponential e−θ

2/2 in
term of real hyperbolic sinus and cosinus. Indeed, we can write

e−θ
2/2 = e−

(θ2
1 +θ2

2 )

2 e−θ1θ2j

= e−
(θ2

1 +θ2
2 )

2 {cosh θ1θ2 − j sinh θ1θ2} with θ = θ1 + θ2j.

Taking

ξ = α + βj,

we have that

ξ−1/4 =
(α + β)−1/4 + (α− β)1/4

2
+ j

(α + β)−1/4 − (α− β)1/4

2
:= α′ + β′j.
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For the normalized eigenfunction, we can then write

φl (x) =

[√
mω

π~
1

2l l!

]1/2

e−
(θ2

1 +θ2
2 )

2

·
{[(

α
′ cosh θ1θ2 − β′ sinh θ1θ2

)
Re (Hl (θ)) +

(
β
′ cosh θ1θ2 − α′ sinh θ1θ2

)
Hy (Hl (θ))

]
+ j

[(
α
′ cosh θ1θ2 − β′ sinh θ1θ2

)
Hy (Hl (θ)) +

(
β
′ cosh θ1θ2 − α′ sinh θ1θ2

)
Re (Hl (θ))

]}
,

where Re (Hl (θ)) and Hy (Hl (θ)) stand for the real and the hyperbolic
part of Hl (θ), respectively.
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In fact, Re (Hl (θ)) = Re (Hl (x , y)) and Hy (Hl (θ)) = Hy (Hl (x , y)) are
polynomials of two real variables. For examples:

Re (H0(x , y)) = 1, Hy (H0(x , y)) = 0

Re (H1(x , y)) = 2x , Hy (H1(x , y)) = 2y

Re (H2(x , y)) = 4x2 + 4y2 − 2, Hy (H2(x , y)) = 8xy

Re (H3(x , y)) = 8x3 + 24xy2 − 12x , Hy (H3(x , y)) = 24x2y + 8y3 − 12y .
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Figure 1: Re (φ2(θ1, θ2)) for α = 1 and β = 0

It is not so hard to see that if we take ξ1̂ = 1 = ξ2̂ (resp. α = 1 and
β = 0) and l = l ′ (indirectly X1̂ = X2̂, P1̂ = P2̂ and so on), we recover
the usual eigenfunctions and energy of the standard quantum harmonic
oscillator for the real slice (x ∈ R or θ2 = 0).
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Figure 2: Hy (φ2(θ1, θ2)) for α = 1 and β = 0
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Figure 3: |φ2(θ1, θ2)|2 = Re (φ2(θ1, θ2))2 + Hy (φ2(θ1, θ2))2

Here is the probability density of φ2(θ1, θ2) for α = 1 and β = 0.
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Finally, we can show that the collection of all finite linear
combinations of bicomplex functions φl (x), with bicomplex
coefficients, is an M(2)-module. Specifically,

M̃ :=

{∑
l

wlφl (x) | wl ∈M(2)

}
.

Since M̃ only involves finite linear combinations of the functions φl ,
it is not complete. With new methods developed recently, however,
we can extend M̃ to a complete module, in fact to a bicomplex
Hilbert space.
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We can define two vector spaces Ṽ1 and Ṽ2 as Ṽ1 = e1M̃ and
Ṽ2 = e2M̃. It is clear that Ṽ1 contains all functions e1φl 1̂ and Ṽ2

contains all e2φl 2̂. Now the functions φl 1̂ and φl 2̂ are normalized
eigenfunctions of the usual quantum harmonic oscillator (with ~
replaced by ~ξ1̂ or ~ξ2̂). It is well-known that, as a Schauder basis,
these eigenfunctions generate L2(R).

Let u(x) be defined as before, except that u1̂(x) and u2̂(x) are both
taken as L2(R) functions. Clearly, the set of all u(x) makes up an
M(2)-module, which we shall denote by M. With the scalar product,
M becomes a bicomplex pre-Hilbert space. Since L2(R) is complete
we obtain:

Corollary

M is a bicomplex Hilbert space.
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