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IN THE BEGINNING

• First fractal images
– Apollonius of Perga
– Albretch Dürer

• Self similarity (Leibniz)



The Apollonian Gasket
(300 B.C.)



Dürer Pentagon (1520)



THE MATHEMATICAL CRISIS

• 1875 to 1925
• ‟Pathological Monsters”
• Begins with Karl Weierstrass

– Study of complex functions
– A non-differentiable continuous curve!



Helge von Koch

• Recall: Weierstrass (1875) showed an 
example of a non-differentiable continuous
curve.

• Helge von Koch (1904) suggested a 
simple construction of a continuous curve
without a tangent.



Koch Curve (1904)



Waclaw Sierpinski

• Sierpinski gasket

• Generalization to all n sided polygons.

Waclaw
Sierpinski



Sierpinski square Sierpinski pentagon Sierpinski hexagon

Koch curve

Sierpinski Polygons



3D Sierpinski

Sierpinski pyramid Menger – Sierpinski sponge

Source: http://fractals.nsu.ru/gallery_en.htm



ABOUT DIMENSIONS

• First definition: Euclide (The Elements)
• Problem: transformation from [0,1] to the 

square.
• Some definitions were suggested
• Two types of dimension:

– Integer values (topologic)
– Real values: Hausdorff (1919), Bouligand-

Minkowski (1929), Richarson (1960), Tricot 
(1982), …



Box-counting Dimension

• Seems that it was developped by Hausdorff’s
followers (around 1930)

• Idea: 
– Cover the figure with boxes of ε-length sides.
– Determine the smallest number of boxes needed, in 

function of ε noted N(ε).
– Calculate the dimension using the following formula:  
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Box-Counting Dimension 
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Coasts Length

• Richarson brought the problem of the 
coasts’ length.  As an example:
– Coast length between Spain and Portugal:

616 milles (Spain) or 758 milles (Portugal)
• Coast length goes to infinity!



Britain Coast Length



THE BIRTH OF FRACTAL 
GEOMETRY

• So, we have:
– Difficultly describable physics phenomenons;
– ‟Pathological Monsters”.

• Mandelbrot’s idea: 
– Name those objects;
– Study their communal properties.

• Creation of the word ‟fractal” (1975) whose root
means ‟broken” and ‟irregular”.



Fractal Definition

• Different definitions depending of the authors.
• Mandelbrot: ‟A fractal set (in a plane or in space) 

is a set for which its Hausdorff-Besicovitch
dimension is stricly greater then its topologic
dimension.”

• Fractal caracteristics:
– Its parts have approximately the same structure as 

the whole;
– Its form is extremly irregular or fragmented;
– It contains new details on a large scaling range.



Another Contribution
• Mandelbrot noticed that fractals are everywhere in 

nature:
– Clouds are not spheres;
– Mountains are not cones;
– Islands are not circles; 
– …

• Natural elements description need an adapted
geometry.



MORE ABOUT FRACTALS

• There are different kinds of fractals.
• Some ways to make fractals:

– Complex iterations
– Iterated functions system (IFS)
– L-systems



Complex Iterations

• Julia (1918) suggested to iterate the complex
polynomial zn+1 = zn

2 + c for a constant number c.
• The filled-Julia set associated to c (Kc) is formed

by the points z who generate a bounded
sequence.

• The boundary of the filled-Julia set is the Julia 
set (Jc).

• The arrival of computers allowed us to visualize
those images.



c = -0.8+0.168i

c = -0.344+0.64i

c = 0.328+0.048i

c = -1.096-0.264i

Filled-Julia Sets 
Associated to the Point cGaston 

Julia
Louis 
Fatou



Mandelbrot Set

• M = {c ∈ : Jc is connected}
• We can generate the Mandelbrot set with

the same polynomial zn+1 = zn
2 + c.  This 

time we fix z0 = 0 and we iterate for each
complex number c.



Mandelbrot Set               Benoit 
Mandelbrot



Iterated Functions Systems (IFS)

• These iterations converge to a final image 
called ‟attractor” of the functions system.

• Theory is based on the Banach fixed point 
theorem. So,
– The attractor exist;
– The attractor is unique, no matter which

starting figure is chosen.



Example of Fractal Construction 
Using IFS



L-Systems

• Aristid Lindenmayer (1968) formally
described plant-growth.

• He used a character-string to describe a 
figure.

• Recursive process



Example of a L-system
L-system: Plant

Axiom:
Production rule:
Parameter:

F
F F[+F]F[-F]F
θ = 25,7o

Axiom: 

F
Step 1:

F [ + F ] F [ - F ] F

Step 2:                              …

(F[+F]F[-F]F) [+(F[+F]F[-F]F)](F[+F]F[-F]F)[-
(F[+F]F[-F]F)](F[+F]F[-F]F)

Step 4:

…



Chronological Summary
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Quaternionic Dynamics
In 1982, A. Norton  gave some straightforward 
algorithms for the generation and display in 3-D of 
fractal shapes. For the first time, iteration with 
quaternions (H) appeared. Subsequently, theoretical 
results have been treated for the quaternionic
Mandelbrot set defined by the quadratic polynomial in 
the quaternions of the form q2+c. However, S. 
Bedding and K. Briggs have established that there is 
“no interesting” dynamics for this approach and it 
does not play any fundamental role analogous to that 
for the map z2+c in the complex plane.

Recall: H:={ a + bi + cj + dk : i2 = j2 = k2=-1 }



Quaternionic Dynamics

Author : Jean-François Colonna
Source : http://www.lactamme.polytechnique.fr

Author : Iñigo Quilez
Source : http://rgba.scenesp.org



Bicomplex Numbers
In 1892, in search for a development of special algebras, Corrado Segre
(1860-1924) published a paper in which he treated an infinite set of algebras 
whose elements he called bicomplex numbers, tricomplex numbers, …, n-
complex numbers.
We define bicomplex numbers as follows:

t:={ a + bi1 + ci2 + dj : i1
2 = i2

2 = -1, j2 = 1 }

where  i2j = ji2 = -i1, i1j = ji1 = -i2, i2i1 = i1i2 = j 

and a, b, c, d ∈ .



Bicomplex Numbers

We remark that we can write a bicomplex number 
a + bi1 + ci2 + dj as

(a + bi1) + (c + di1 ) i2 = z1 + z2i2

where ( ) { }2
1 2, : : 1 .z z x y∈ = + = −1 1 1i i i



The idempotent basis
It is also important to know that every bicomplex number z1 + z2i2 has 
the following unique idempotent representation:

z1 + z2i2 = (z1 – z2i1)e1 + (z1 + z2i1)e2

where                     and                   .

This representation is very useful because: addition, multiplication 
and division can be done term-by-term. Also, an element will be non-
invertible iff z1 – z2i1 = 0  or z1 + z2i1 = 0.

2
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=
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1 je2
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The idempotent basis

From the idempotent basis, it is now possible to define 
the notion of the bicomplex cartesian product.

Definition 1. We  say  that              is  a  bicomplex
cartesian set determined by X1 and X2 if

X = X1 xe X2 := { z1 + z2i2 ∈ T : z1 + z2i2 = 
w1e1 + w2e2, (w1, w2) ∈ X1 x X2 }.

X ⊆T



Generalized Mandelbrot Set

Now, let us define a version of the Mandelbrot set for  
bicomplex numbers:
Definition 2. Let Pc(w) = w2 + c  where w, c ∈ T
and                                   . Then the generalized 
Mandelbrot set for bicomplex numbers is 
defined as follows:

From this definition we obtain the following result:
Theorem 1.  The generalized Mandelbrot setM2 is 
connected.

( ) ( )( )( )wPPwP c
n

c
n

c
1: −=

( ){ }2 : 0 .n
cc P= ∈ → ∞M T



Generalized Filled-Julia Sets

It is also possible to generalized the notion of filled-Julia 
sets for the bicomplex numbers:
Definition 3. The generalized filled-Julia set for 
bicomplex numbers is defined as follows:

Finally, we obtain this relationship between the 
generalized Mandelbrot set and the generalized filled-
Julia sets for the bicomplex numbers:
Theorem 2.                       is connected.

( ){ }2, : n
c cw P w= ∈ → ∞TK

2 2,cc∈ ⇔M K



Display in 3-D

Previously, we established a version of the Mandelbrot 
set in dimension four.  We are able now to give a version 
of the Mandelbrot set in dimension three using the 
definition for M2.  The idea is to preserve the Mandelbrot 
set inside M2.  Then, if we restrict the algorithm to the 
points of the form a+bi1+ci2 where a, b, c ∈ , we preserve 
the Mandelbrot set on two perpendicular complex planes 
and we stay in  .  This is the first argument to justify the 
following definition.

3



Dynamics of Several Complex 
Variables

The polynomial Pc(w) = w2 + c is the following 
mapping of       :                    

where w = z1 + z2i2 and c = c1 + c2i2.  We note that this 
mapping is not a holomorphic automorphism of    .

( )2 2
1 2 1 1 2 2, 2 .z z c z z c− + +

2

2



• Definition 4.  The “Tetrabrot” is defined as 
follows:

• It is possible to compute the infinite divergence 
layers of the Tetrabrot.  We have to note at this 
step that each divergence layer will hide the 
others.  For example, Fig. 2 is an illustration for 
the Tetrabrot of one of its divergence layers in 
correspondence with the divergence layer 
illustrated in Fig 1(A) for the Mandelbrot set.

( ){ }: 0 and 0 .n
ca b c d d P= + + + ∈ = → ∞1 2i i j TT

The Tetrabrot



Fig. 1 Fig. 2

The Tetrabrot



The Tetrabrot

• In fact, the Tetrabrot is inside Fig. 2. It is 
possible to see a part of the Tetrabrot (see Fig. 
3) if we cut a piece of Fig. 2.

Fig. 2 Fig. 3



The Tetrabrot

• In Fig 3, the colors 
represent the other 
divergence layers (see 
Figs 4, 5, 6 and 7).  
Figure 7 begins to be 
close to the set we 
wish to approach; then 
Fig 7 with its cut plane 
gives certainly a good 
idea of the Tetrabrot.

Fig. 3 Fig. 4 Fig. 5

Fig. 6

Fig. 7



The Tetrabrot

Fig. 7 Fig. 8

• Moreover, we observe that the specific enlargement of 
Fig. 7 between A and B (Fig. 8) confirms that the 
Tetrabrot could be disconnected. 



The Tetrabrot
• Finally, to define the Tetrabrot

we have put the last coordinate
“j” equal to zero.  In fact it is 
possible to do the same if we 
fix the last coordinate equal to 
a number different from zero.  
However, if we do that, we lose 
the beautiful symmetry of the 
Tetrabrot.  Figure 9 gives an 
illustration of this phenomenon 
for a fixed “dj” with d ≠ 0.

Fig. 9



The Cantor Set
The following classical theorem establishes a connection between
the Cantor sets and the filled-Julia sets:

Theorem 3 (P. Fatou and G. Julia) Let Kc be a filled-Julia set of the 
family of complex quadratic polynomials Pc(z) = z2 + c in the complex 
plane, and the basin of attraction of  for Pc(z) = z2 + c.
Then

(1)                       is connected;

(2)                      is a Cantor set.

0 c c∈ ⇔K K

0 c cA∈ ⇔ K

( ) /c cA ∞ = K



The Cantor Set

Let us recall the definition of a Cantor set in  :

Definition 5.  A Cantor set is defined as a compact, 
perfect, totally disconnected subset in .. 

Remark 1.  Any such set is homeomorphic to the 
Cantor middle third set and therefore deserve the 
name of Cantor set.

n

.n



Basin of attraction of ∞
Now, let us define the concept of basin of attraction of ∞
in the context of bicomplex numbers:

Definition 6. Let K2,c be a filled-Julia set of the family of 
bicomplex quadratic  polynomials Pc(w) = w2 + c in T.  
We define A2,c(∞) = T\K2,c as the basin of attraction of ∞
for Pc(w) = w2 + c.  We note that

( ) ( ){ }2, .n
c cA w P w∞ = ∈ →∞T



• The next definition will be well justified in regard to the 
theorem below.

• Definition 7.  We define

as the strong basin of attraction of ∞ for Pc(w) = w2 + c
where c = (c1 – c2i1)e1 + (c1 + c2i1)e2. 
We note that:

( ) ( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

2,

c c

c c c e c c

c c e c c

SA

A A
− −

− +

∞ = ×

= ∞ × ∞
1 1

1 1

i i

i i

K K

( ) ( )2, 2, .c cSA A∞ ⊂ ∞

Generalized Fatou-Julia Theorem



• The following theorem gives a characterization
of the filled-Julia sets for bicomplex numbers
and introduces naturally the idea of Cantor sets 
in  

• Theorem 4 (Fatou-Julia Theorem in t) Let 
K2,c be a filled-Julia set for bicomplex numbers
and c ∈ t.  Then
(1) is connected;
(2)                               is a Cantor set in T;
(3) is disconnected

but not totally disconnected.

2, 2,0 c c∈ ⇔K K
( )2, 2,0 c cSA∈ ∞ ⇔ K
( ) ( )2, 2, 2,0 \c c cA SA∈ ∞ ∞ ⇔ K

4.

Generalized Fatou-Julia Theorem



• Now it is possible to illustrate by figures in    the connections 
between the various cases of the last theorem when the filled-Julia 
sets come from points around or inside the Tetrabrot.  In fact, we are 
in the case 1 of the last theorem if and only if the filled-Julia sets 
come from points inside the Tetrabrot.  The other cases are 
established from points inside the infinite divergence layers of the 
Tetrabrot.  Fig 10 and 11 are an illustration of this phenomenon
where the red zones are the points c which satisfy the case 3 and 
the other colors the points c which satify the case 2.

3

Generalized Fatou-Julia Theorem



Fig. 10 Fig. 11

Generalized Fatou-Julia Theorem



• More specifically, the Fig. 11 makes it 
possible to observe this phenomenon on 
the bottom inside the Tetrabrot for a 
specific divergence layer; the colors on the 
cut plane are an illustration of the other 
divergence layers of the Tetrabrot.  We 
note also that the colors for the case 2 
have been computed from the average of 
each divergence layer obtained from the 
number of iterations needed to know that 
zero is inside                  and( )∞− 1i21 ccA ( )

1 2
.c cA + ∞

1i

Generalized Fatou-Julia Theorem

Fig. 11



• The same process as for the Tetrabrot yields a 
version of the filled-Julia sets in   .  The next 
definition defined the bicomplex filled-Julia sets 
in    .

• Definition 8.  A bicomplex filled-Julia set in      
is defined as follows: ( c ∈ T )

( ){ }2, T: =0 and .n
c cw a b c d d P w= = + + + ∈ → ∞1 2i i j  L

The filled-Julia sets in   .3

3

3

3



The filled-Julia sets in   .

• Figure 12 is an illustration of the filled-Julia set for the 
Tetrabrot at the same point c = 0.25 as the filled-Julia set 
D of Fig. 1.  Hence, Fig. 12 is a kind of generalization of 
the filled-Julia set K0.25 in the complex plane.

Fig. 12Fig. 1

3



Fig. 13

Fig. 14

Fig. 15

Fig. 16

• In the same manner, Figs. 13-16 are an illustration of the 
filled-Julia set at c = i1 for different divergence layers to 
infinity.  We remark that Fig. 16 is a good approximation 
of this set and an interesting generalizationof Fig. 1(E).

Fig. 1

The filled-Julia sets in   .3



The same process can also be used when the 
filled-Julia sets are not connected. In that case 
we established these following results:

• Lemma 1.  Let c ∈ T and K2,c a Cantor set in   
Then L2,c is compact and totally disconnected in

• Theorem 5. Let                                          and 
Kc a Cantor set.  Then, K2,c is a Cantor set in  
and Lc,2 is the union of a Cantor set in   and a 
set which is at most countable.

{ }2( ) : : 1c x y∈ = + = −1 1i i i

3.

4

4

3

3“Cantor sets” in   .3



“Cantor sets” in   .
• Figures 17-34 give an illustration of such “Cantor sets” in     .  In fact, 

Figs. 17-22 and 23-29 are respectively close to the filled-Julia sets of 
Fig. 12 and 13 without coming from points inside the Tetrabrot.  

3

3

Fig. 12

Fig. 17 Fig. 18 Fig. 19

Fig. 20 Fig. 21 Fig. 22



Fig. 23Fig. 22Fig. 21

Fig. 20Fig. 19Fig. 18

“Cantor sets” in   .3

Fig. 13

• In each case, each step used a divergence layer to infinity closer to the true 
set.  With this construction, we remark that we visually obtain a result similar 
to the geometric construction of the Cantor middle third set.



“Cantor sets” in   .3

Fig. 25 Fig. 26

Fig. 28 Fig. 29

Fig. 24

Fig. 27

• Morever, Fig. 29 
is an ilustration
of L2,c for a 
filled-Julia set 
K2,c where:

• We note that 
this set in     has 
connected com-
ponents.  

( ) ( )2, 2,0 \ .c cA SA∈ ∞ ∞

3
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Bicomplex Numbers
• The norm used on T is the Euclidean norm 

(noted | |) of     and the following formula is true 
over the set of bicomplex numbers:

1
2 2 2

1 2 1 2
1 2 .

2
z z z z

z z
⎛ ⎞− + +

+ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1
2

i i
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Bicomplex Numbers
• The set

will be called the set of hyperbolic numbers (also 
called duplex numbers) and

• Will be referred to as the modulus in j of 
w = z1 + z2i2.

{ }: | ,x y x y= + ∈jD

1 2 1 2: .w z z z z= − + + ∈1 1 1 2j
i e i e D



Bicomplex Numbers

• This specific modulus satisfies the following 
properties:

(1)

(2)

(3)

( )2Re ;w w w= =
j j

1 2 1 2 1 2, .w w w w w w⋅ = ∀ ∈
j j j

T

0 if and only if 0;w w= =
j



Distance Estimation for the 
Tetrabrot

• Let us begin with the following well known result about the 
distance estimation for the filled-Julia sets in the complex 
plane.

• Theorem 1.  Let d(z, Kb) = inf{|z - a| : a ∈ Kb} be defined 
as the distance from z ∈ to the filled-Julia set Kb with    
b ∈ M.  Then the distance d(z0, Kb) between z0 lying 
outside of  Kb and  Kb itself satisfies

Where G(z0) is the potential at the point z0.

( )
( ) ( )

( ) ( )
( )0

0 0
0

00

sinh 2sinh
, .

'2 ' bG z

G z G z
d z

G ze G z

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦< <K



Distance Estimation for the 
Tetrabrot

• We will express the distance form a point w ∈ T
to a bicomplex filled-Julia set in terms of two 
distances in the complex plane (in i1). 

• Lemma 1.  Let d(w, K2,c) = inf{|w - a| : a ∈ K2,c}
be defined as the “bicomplex” distance from     
w = z1 + z2i2 ∈ T to the bicomplex filled-Julia set 
K2,c where c = c1 + c2i2 ∈ T.  Hence, d(w, K2,c) = 

( ) ( )
1

2

1 2 1 2

2 2

1 2 1 2, ,
.

2
c c c cd z z d z z− +

⎡ ⎤⎡ ⎤ ⎡ ⎤− + +⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
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1 11 i 1 ii iK K



Distance estimation for the 
Tetrabrot

• Definition 1.  Let G1(z1 – z2i1) and G2(z1 + z2i1) be 
two electrostatic potentials.  The bicomplex pot-
ential, at a point is 
defined as

and

( )( ) ( )( )1 21 2 \ \b e bw z z= + ∈ ×2 1 1i i iK K

( ) ( ) ( )1 1 2 2 1 2:G w G z z G z z= − + + ∈1 1 1 2i e i e D

( ) ( ) ( )1 1 2 2 1 2' : ' ' .G w G z z G z z= − + + ∈1 1 1 2i e i e D



Distance estimation for the 
Tetrabrot

• In T, the bicomplex logarithm ln(z1 + z2i1) is defined to be the inverse 
of the bicomplex exponential function:

With this definition of the bicomplex logarithm, it is possible to 
express the bicomplex potential in a similar way to that used for one 
complex variable.  Let                                          .

• Theorem 2.  Let G : T\e K2,c →D be a bicomplex potential and 
c = (c1 – c2i1)e1 + (c1 + c2i1)e2 . Then

•
•

where                                                           is biholomorphic in 
terms of two complex variables.

( ) ( )1 2 1
2 2: cos sin .z z ze e z z+ = +⎡ ⎤⎣ ⎦

2i
2i

( )( ) ( )( )1 2 1 22,\ : \ \e c c c e c c− += ×
1 11 i 1 ii iK K KT

( ) ( )ln c j
G w w wφ= ∀ ∈T

( ) ( )1 1
2,: \ \ 0,1 0,1c e c e eB Bφ → ×KT T



Distance Formulas
• We are now ready to state the major result of this talk.
• Theorem 3.  Let  w0 = z1 + z2i1 ∈ T and c1 + c2i2 ∈ M2. 

Then the distance d(w0, K2,c) between w0 lying outside 
of K2,c and K2,c itself satisfies:

(1) If w0 ∈ T\e K2,c ,

where G(w0) is the bicomplex potential at the point w0.

( )
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Distance Formulas
(2) If

and

(3) If

-Similar to (2) -

( ) ( )
( ) ( )1 1 2

1 1 2
0 2,

1 1 2
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,

2 2 'c G z z

G z z
d w
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i
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Approximated Distance Formulas

• Theorem 4.  Let w0 = z1 + z2i2 ∈M2. Then, the distance 
d(w0, K2,c) between w0 lying outside of K2,c and K2,c itself 
approximatly satisfies:
(1) If

where 

and

0 2,\ ,e cw ∈ KT

( )0 2,1
2

ln
, 2 ln

'2 'n

n n j n
c n j

n
nj

w w wd w w
ww w

< <K
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Approximated Distance Formulas

(2) If

where 

and

( )( ) ( )1 2 1 20 \ ,c c e c cw − +∈ ×
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Approximated Distance Formulas

(3) If

- similar to (2) -
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Ray-Tracing
• Now we use the lower bound distance 

estimation formula Dl in conjunction with ray-
tracing to produce images of bicomplex fractals.

• Let    be an unitary vector in     and µ a point in 
T\K2,c.  Now define

• By definition, no point in K2,c can be a member 
of such sequence.
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Ray-Tracing
• If we set the projection eye to µ and use    as the 

orientation of our ray, then

is our ray-tracing algorithm. 

• Two things may happen, we may miss the fractal or we 
may converge i.e.

or
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Exploration
• The images of the fractals will be drawn on a 

screen, noted S that is defined by four coplanar 
points in space.  These points are our screen 
corner.  We divide S into pixel according to the 
resolution desired for our image.  The position of 
the eye µ, will be function of the position and
size of S.  When we move S, µ will follow.  We 
compute the first image of the object and while 
tracing the fractal, we keep stored the distance 
of the object. 



Exploration
• To zoom into the region of interest, few steps 

are necessary.  First we must recenter the 
selected region by rotation from µ, then resize 
the screen to the region of interest.  Next, using 
a fraction of distance to the object, we move S 
forward.  A typical implementation could use the 
ratio screen size region of interest of the fractal 
distance.  As we get closer to the fractal, we 
should lower the ε value to keep a good level of 
fractal details.



More details available on my web site:

Dominic Rochon
Département de mathématiques et d’informatique

Université du Québec à Trois-Rivières
C.P. 500 Trois-Rivières, Québec

Canada, G9A 5H7
E-mail: Dominic.Rochon@uqtr.ca

www.3dfractals.com
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